
Jaroslav Pullmann
Solutions Architect

Taught by:

Data Quality
Quality assurance for enterprise data unification

Learning
Objectives

Asses quality requirements for various kinds of data

Understand the concept of data quality and why it matters

Apply appropriate means to assess quality of data

Evaluate, communicate, and act upon data quality reports

Operate Stardog to ensure quality of integrated data

Data Quality
Overview

Data Quality Concept

• Quality as fitness for use (J. M. Juran)

• Contextual, relative nature of data quality

• Depending on consumers’ requirements (specification)

• Different degrees of relevance ranging from compliance to critical reliability

• Cost trade-off (maintain a quality level vs. accept fees and failures)

• General quality assurance principles

• Test and intervene early, (close to the source), prevent errors to propagate

• Identify any related validation targets (data, schema etc.)

• Formalize quality constraints (machine processable), automate their validation

• Multi-dimensional

• Intrinsic quality dimensions related to data, extrinsic related to digital infrastructure

Some Dimensions of Data Quality

Accuracy Is the information correct?

Credibility Are there multiple versions of the same information?

Completeness Is information missing?

Relevance Is the information helping answer important questions?

Timeliness Is the information up-to-date?

Validity Does the information conform to the definition?

• Compare to ISO/IEC 25012 Quality Dimensions

https://iso25000.com/index.php/en/iso-25000-standards/iso-25012

Data Quality Vocabulary (1/2)

• Data Quality Vocabulary (DQV)

• Model for a structured and actionable expression of data quality

• Quality Dimension (dqv:Dimension)

• Addresses a user-oriented qualitative characteristic of a dataset, for example:

• Is it “complete”, “valid”, “accurate”, “up to date”, (technically) “available”, etc.

• Related dimensions are grouped to higher-level categories (dqv:Category)

• A dimension is measured via one or more quantifiable metrics

• Quality Metric (dqv:Metric)

• Strategy implementing a measurable assessment of a data quality dimension

• Observes a concrete indicator, e.g., spatial resolution (accuracy)

• Value range is often numeric (percentage) or boolean

https://www.w3.org/TR/vocab-dqv/

Data Quality Vocabulary (2/2)

• Measurement (dqv:QualityMeasurement)

• Result of evaluating a given dataset against a specific quality metric

• Quality annotation (dqv:QualityAnnotation)

• Accompanying quality statements, such as ratings, certificates, or feedback

• Metadata (dqv:QualityMetadata)

• Group of quality certificates, policies, measurements, and annotations

• Further context information about the evaluation (agent or service, time, etc.)

Data Quality Vocabulary / Outline

Source: https://www.w3.org/TR/vocab-dqv/DataQuality0.2.9.svg

Quality Assurance Cycle

Analyze

Validate

EvaluateFix

Control

Select and understand the
validation targets (kinds of
data, its origin, and changes)
plus quality criteria that apply

Define and apply
validation tests
(SHACL Shapes)

Collect and evaluate
the validation reports

Create appropriate fixes
to correct quality issues
and handle their sources

Setup processes to
actively detect and
prevent quality issues

Analyze

Validation Targets

Source data
(non-graph)

Graph data
(instances)

Graph data
(concepts)

Graph data
(schema)

NoSQLSQL

RDFS/OWL/SWRL

SKOS

RDF

Structured Data (SQL)

• Relational data

• Structured in tables (entity types) of rows (instances) and columns (attributes)

• Maintained in database systems (RDBMS) and files (Excel, delimiter-separated files)

• Schema defined on creation via Data Definition Language (DDL) part of SQL

• Syntax conformance and validity constraints enforced by RDBMS, for example:

• Presence (NOT NULL)

• Uniquiness (UNIQUE)

• Referential integrity (PRIMARY/FOREIGN KEY)

• Data-type conformance (DATE)

• Value range (CHECK)

Structured Data / Example

 CREATE TABLE Album (
id INT,
name VARCHAR(30)

NOT NULL,
release_date DATE,
artist INT,
PRIMARY KEY (id),
FOREIGN KEY (artist)

REFERENCES Artist (id)
);

 SQL / DDL

+----+------------------+--------------+--------+
| id | name | release_date | artist |
+----+------------------+--------------+--------+
1	please please me	1963-03-22	5
2	mccartney	1970-04-17	2
3	imagine	1971-10-11	1
4	rubber soul	1965-12-03	5
5	let it be	1970-05-08	5
+----+------------------+--------------+--------+

 SQL / Data

Semi-Structured Data (NoSQL)

• Non-relational, hierarchical data (documents)

• Structured as hierarchies of non-overlapping blocks (trees)

• Individual files or managed by document-oriented databases

• Extensible Markup Language (XML)

• Elements, attributes, processing instructions, etc.

• JavaScript Object Notation (JSON)

• Objects, arrays and literal values (string, number, boolean)

• Standard syntax definitions (a) and schema languages (b) exist to ensure the data is:

(a) Well-formed, i.e., it uses the correct syntax and could be at least read

(b) Valid: it additionally complies with a (custom) schema and could be reliably processed

• Document schema is optional but capable of expressing complex validation constraints

https://www.w3.org/standards/xml/core
https://www.json.org/json-en.html

Semi-Structured Data / Example

 XML

<?xml version="1.0" encoding="UTF-8"?>
<MusicDB
 xmlns="http://stardog.com/tutorial/">

<Album id="Let_It_Be">
 <name>Let It Be</name>
 <date>1970-05-08</date>
 <artist ref="The_Beatles"/>
 <track ref="Across_the_Universe"/>
 <track ref="Dig_It_(Beatles_song)"/>
 <!-- ... -->
 <producer ref="Phil_Spector"/>
</Album>

</MusicDB>

 XML Schema

<xs:element name="MusicDB">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="tutorial:Album"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="Album">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="tutorial:name"/>
 <xs:element ref="tutorial:date"/>
 <xs:element ref="tutorial:artist"/>
 <xs:element minOccurs="1"

maxOccurs="unbounded" ref="tutorial:track"/>
 <xs:element ref="tutorial:producer"/>
 </xs:sequence>
 <xs:attribute name="id" use="required"

type="xs:string" />
 </xs:complexType>
 </xs:element>

Graph Data / Instances

• Vast majority of graph data

• Arbitrary statements (assertions) on instances of ontology classes (RDF statements)

• Unlike XML or JSON various syntaxes exists for RDF, constraints to operate on triple model

• Instance constraints likely reflect domain-specific assumptions about valid resources

• Example constraints for the Music DB domain:

• “An album must contain at least one track”

• “The release date property of an album should be of type xsd:date”

• “A track should have a non-zero length”

Graph Data / Example

 Instance data (Turtle)

:Let_It_Be
 :artist :The_Beatles ;
 :date "1970-05-08"^^xsd:date ;
 :name "Let It Be" ;
 :producer :Phil_Spector ;
 :track :Across_the_Universe , :Get_Back ...

 RDF Schema (Turtle)

:Album a rdfs:Class ;
 rdfs:label "Album" .

:date a rdf:Property ;
 rdfs:label "date" ;
 rdfs:comment "The release date of an album." ;
 rdfs:domain :Album ;
 rdfs:range xsd:date .

:artist a rdf:Property ;
 rdfs:label "artist" ;
 rdfs:comment "The artist that performed this album." ;
 rdfs:domain :Album ;
 rdfs:range :Artist .

:track a rdf:Property ;
 rdfs:label "track" ;
 rdfs:comment "A song included in an album." ;
 rdfs:domain :Album ;
 rdfs:range :Song .

Graph Data / Concepts

• Simple Knowledge Organization System (SKOS)

• Semi-formal knowledge representation (thesauruses, classification schemes, tags)

• Hierarchical (skos:broader) and associative (skos:related) networks of concepts

• Linguistic annotation is relevant (skos:prefLabel) and exhaustive (skos:altLabel)

• Example constraints on taxonomy concepts:

• “Each concept should refer to the defining scheme”

• “Each concept must have a main title in English”

• “There should be exactly one main title per language tag”

• “Concepts must not recursively link to itself” (prevent cyclical hierarchies)

https://www.w3.org/TR/skos-reference/

Concepts / Example

Concept usage

:Let_It_Be :track :Across_the_Universe .

:Across_the_Universe
 a :Song ;
 :name "Across the Universe"@en ;
 :genre genre:RockMusic ;
.

 Scheme definition

@prefix : <http://stardog.com/tutorial/> .
@prefix genre: <http://stardog.com/tutorial/music_genre/> .
@prefix skos: <http://www.w3.org/2004/02/skos/core#> .

:MusicGenre
 a owl:Class ; rdfs:subClassOf skos:Concept ;
 rdfs:label "Music genre"@en ; rdfs:isDefinedBy : .

genre: a skos:ConceptScheme ;
 rdfs:label "Concept scheme of music genres" ;
 skos:hasTopConcept genre:AbstractGenre .

genre:RockMusic
 a model:MusicGenre ;
 skos:prefLabel "Rock music"@en ;
 skos:broader genre:PopularMusic ;
 skos:inScheme genre: .

genre:PopularMusic
 a model:MusicGenre ...

Graph Data / Models

• “Terminology” (classes and properties) for instantiation in RDF graphs

• Ranging from simple hierarchies (RDF Schema) to class expressions (OWL)

• Example model-related constraints:

• “There should be at most one value type (rdfs:range) specified per property”

• “Property names should start with the verbs ‘has’ or ‘is’ ”

• “Each node (especially blank nodes) should specify a type”

• “At most one single value should be defined for the functional property ID”

Validate

Overview

• “Unit testing” paradigm

• Compare to quality assurance in software development

• Treat data as code, automate testing as part of the continuous development (CD)

• Options in Stardog: database consistency check and constraint validation (SHACL)

• Database (in)consistency testing

• Tests whether the database is consistent w.r.t. inferences entailed by the schema

• RDF schema languages (RDFS, OWL) are not sufficient for constraint validation

• They are descriptive, not prescriptive, unlike DDL or document schema languages

• Do not define constraints, but inference rules to derive (new) facts out of the asserted

• These may disclose inconsistencies (logical errors) contradicting the stated facts

https://docs.stardog.com/stardog-cli-reference/reasoning/reasoning-explain

Consistency Test / Invalid Datatype

 RDF Schema / Turtle syntax
RDFS Inference: Objects of the property :date
are inferred to be of the datatype xsd:date.
Any invalid values will make the database
inconsistent. The value of type string in this
statement:

:MyAlbum :date "2020-01-01" .

will conflict with the inferred datatype date:

$stardog reasoning explain -i music

VIOLATED :date rdfs:range xsd:date
 ASSERTED :date rdfs:range xsd:date
 ASSERTED :MyAlbum :date "2020-01-01"

:date a rdf:Property ;
 rdfs:label "date" ;
 rdfs:comment "The release date of an album." ;
 rdfs:domain :Album ;
 rdfs:range xsd:date .

Consistency Test / Disjoint Types

 OWL Ontology / Turtle syntax

:date a rdf:Property ;
 rdfs:label "date" ;
 rdfs:comment "The release date of an album." ;
 rdfs:domain :Album ;
 rdfs:range xsd:date .

:artist a rdf:Property ;
 rdfs:label "artist" ;
 rdfs:comment "The artist that performed this album." ;
 rdfs:domain :Album ;
 rdfs:range :Artist .

:producer a rdf:Property ;
 rdfs:label "producer" ;
 rdfs:comment "The producer of this album." ;
 rdfs:domain :Album ;
 rdfs:range :Producer .
artificial rule preventing Artists be Producers
:Producer owl:disjointWith :Artist .

OWL Inference: Objects of the property
:producer are inferred to be of type :Producer.

An artificial rule prohibits a producer to be an
artist, i.e., the classes :Producer and :Artist
are disjoint (owl:disjointWith). These triples:

 :MyAlbum :artist :me ; :producer :me .

are not consistent w.r.t the model:

VIOLATED :Producer owl:disjointWith :Artist
 ASSERTED :Producer owl:disjointWith :Artist
 INFERRED :me a :Producer
 ASSERTED :producer rdfs:range :Producer
 ASSERTED :MyAlbum :producer :me
 INFERRED :me a :Artist
 ASSERTED :artist rdfs:range :Artist
 ASSERTED :MyAlbum :artist :me

Overview / ICV

• Integrity Constraint Validation (ICV) in Stardog

• Ensures the ingested data is valid according to a rule set

• On-demand mode: background checks of the database status

• On-commit (guard) mode: apply constraint validation as part of update transactions

• Transactions will fail upon error preventing DB from becoming invalid

• Configuration property: icv.enabled=true

• SHACL is the standard and recommended means for expressing constraints

https://docs.stardog.com/data-quality-constraints/#data-quality-constraints

SHACL (Shapes Constraint Language)

• Recent W3C specification (2017)

• RDF vocabulary for describing and validating RDF data

• Tutorial coverage: SHACL Core and SHACL-SPARQL Extension

• A Shapes graph defines constraints on a data graph

• Shapes graph consists of a Shapes (constraint definitions) applied to “targets”

• Data graph in Stardog comprises the default graph and all named graphs

• Result of the validation is a Validation report

• The the data graph is valid if all targets conform to related shapes

• Shapes graph and validation report are RDF graphs (easy to query and manipulate)

• RDF syntax file extensions (*.ttl, *.rdf)

• Prefix sh, namespace http://www.w3.org/ns/shacl#

https://www.w3.org/TR/shacl/
https://www.w3.org/TR/shacl/#core-components
https://www.w3.org/TR/shacl/#sparql-constraints

SHACL Outline

Source: ALIGNED (EU Project deliverable)

https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5b41d1264&appId=PPGMS

SHACL Shapes

• Define a set of constraints a validation target must satisfy

1) Node shapes operate on target nodes (set of nodes referred to by a target expression)

2) Property shapes operate on values of predicates specified by the sh:path property

• Specify inline constraint on the respective target kind (e.g., sh:nodeKind or sh:minCount)

• Or, delegate the constraint specification to an another shape (sh:property, sh:node)

• Relate to other shapes to compose logical expressions (e.g., sh:and, sh:or)

• Optionally specify a custom validation message (sh:message) and severity (sh:severity)

• Severity levels: informative (sh:Info), indicative (sh:Warning), and critical (sh:Violation)

SHACL Shape / Simplified Outline

SHACL Shape / Example

 SHACL ICV

An album must contain at least one track

prefix sh: <http://www.w3.org/ns/shacl#>
prefix : <http://stardog.com/tutorial/>

:AlbumTrackShape
a sh:NodeShape ;
sh:targetClass :Album ;
sh:property [

sh:message "An album should contain at least one track" ;
sh:path :track;
sh:minCount 1 ;

] ;
.

Node Shapes

• Node shapes operate upon RDF terms (subjects and objects of triples)

• Typically define validation target(s) via enumeration, node type, or connecting predicate:

• sh:targetNode :Please_Please_Me, :Rubber_Soul (Listing of targeted resources)

• Nodes missing in the data graph will not be reported

• sh:targetClass :Album (Class of nodes this shape applies to transitively)

• Applies to given class and any of its subclasses (rdf:type/rdfs:subClassOf*)

• sh:targetSubjectsOf :writer (Subjects of triples with given property as predicate)

• sh:targetObjectsOf :track (Objects of triples with given property as predicate)

• Shape with types sh:NodeShape and rdfs:Class define an implicit class target of itself

• Individual nodes targeted by the above expressions become a “focus node” of validation

• Next to defining target optionally define constraints on the focus node, e.g., sh:nodeKind

https://www.w3.org/TR/shacl/#node-shapes
https://www.w3.org/TR/shacl/#implicit-targetClass

Node Shapes / Example

 Implicit class target # :Album class defines its own node shape

:Album a rdfs:Class, sh:NodeShape ;
 sh:property [

sh:path :track;
sh:minCount 1 ;

] .

 Node constraint # each album should be given a (meaningful) IRI

:AlbumShape a sh:NodeShape ;
 sh:targetClass :Album ;
 sh:nodeKind sh:IRI.

Property Shapes

• Property shapes constrain values of a path on the focus node specified via predicate sh:path

• sh:path may refer to a single predicate (:track) or a SPARQL property path:

Predicate path :track :track

Sequence path :album/:track (:album :track)

Alternative path :track | :song [sh:alternativePath (:track :song)]

Inverse path ^:track [sh:inversePath :track]

0 - n path rdfs:subClassOf* [sh:zeroOrMorePath rdfs:subClassOf]

1 - n path rdfs:subClassOf+ [sh:oneOrMorePath rdfs:subClassOf]

0 - 1 path rdfs:subClassOf? [sh:zeroOrOnePath rdfs:subClassOf]

https://www.w3.org/TR/shacl/#property-shapes
https://www.w3.org/TR/shacl/#property-paths

Property Shapes / Example

 Simple predicate :SongLengthShape
a sh:NodeShape ;
sh:targetClass :Song ;
sh:property [

sh:path :length ;
sh:datatype xsd:integer ;
sh:minExclusive 0 ;

] ;
.

 Property path :SongLengthShapePath
a sh:NodeShape ;
sh:targetClass :Album ;
sh:property [

sh:path (:track :length) ;
sh:datatype xsd:integer ;
sh:minExclusive 0 ;

] ;
.

Node Types (1/2)

• Target node: Any node that satisfies the target condition of a shape.

• Each target node becomes a focus node during the validation process.

• Focus node: A node that is being validated against a shape

• Target nodes plus nodes selected implicitly by shape-based constraints (via sh:node)

• Value nodes: A node that is used for validation

• For node shapes the value node is the same as the focus node

• For property shapes any node reachable from the focus node via

expression defined by the sh:path predicate

• Focus and value nodes is a terminology used to describe the validation process

• Target nodes denote the initial set of nodes specified for validation

Node Types (2/2)

Shape

sh:path

sh:target*

Target node

Focus node
Value node

:Abbey_Road
:track

 Validation

 Specification

:Here_Comes_the_Sun

Constraints

• SHACL constraints express general purpose tests to be applied on value nodes

• Internally represented by constraint components (instances of sh:ConstraintComponent)

• Components define at least one mandatory and arbitrary optional parameters (sh:Parameter)

• Parameters are on defined on SHACL shapes via corresponding RDF properties

• Object diagram of the sh:PatternConstraintComponent

https://www.w3.org/TR/shacl/#PatternConstraintComponent

Shape-Based Constraints

 Complex shapes # Songs linked in an album should refer back
:AlbumTrackShape

a sh:NodeShape ;
sh:targetClass :Album ;
sh:property [

sh:path :track ;
sh:minCount 1 ;
sh:node :TrackAlbumShape ;

] .
:TrackAlbumShape

a sh:NodeShape ;
sh:property [

sh:path :trackOf ;
sh:class :Album ;
sh:minCount 1 ;

] .

• Shape-based constraints specify complex conditions combining node and property shapes

• All value nodes must comply with the shape linked via sh:node or sh:property predicates

focus nodes

value nodes

https://www.w3.org/TR/shacl/#core-components-shape

Qualified Shape Constraints

Qualified constraints # Example from the SHACL specification, hand to have 4 fingers and 1 thumb
ex:HandShape

a sh:NodeShape ;
sh:targetClass ex:Hand ;
sh:property [

sh:path ex:digit ;
sh:maxCount 5 ;

] ;
sh:property [

sh:path ex:digit ;
sh:qualifiedValueShape [sh:class ex:Thumb] ;
sh:qualifiedValueShapesDisjoint true ;
sh:qualifiedMinCount 1 ;
sh:qualifiedMaxCount 1 ;

] ;
sh:property [

sh:path ex:digit ;
sh:qualifiedValueShape [sh:class ex:Finger] ;
sh:qualifiedValueShapesDisjoint true ;
sh:qualifiedMinCount 4 ;
sh:qualifiedMaxCount 4 ;

] .

• Only a subset of value nodes is required to comply with a sh:qualifiedValueShape

• Mandatory cardinality bounds: lower (sh:qualifiedMinCount), upper (sh:qualifiedMaxCount)

• Values must not conform to any sibling shape when sh:qualifiedValueShapesDisjoint is true

node shape

https://www.w3.org/TR/shacl/#QualifiedValueShapeConstraintComponent

Closed Shapes

 Closed shape # Any property not covered by a shape is invalid
:ClosedSongShape

a sh:NodeShape ;
sh:targetClass :Song ;
sh:closed true ;
sh:ignoredProperties (rdf:type) ;
sh:property
 :NameShape ,
 :WriterShape ,
 :LengthShape ,
 :DescriptionShape ;

.

• SHACL shapes are not required to cover all existing properties of the target nodes

• Closed node shapes (sh:closed = true) will report any remaining, unsupervised properties

• Supply an optional list of (generic) properties, that are not covered by a shape, to be ignored

https://www.w3.org/TR/shacl/#ClosedConstraintComponent

Cardinality Constraints

 Property count # There should be at least one song per album

:AlbumTrackShape
a sh:NodeShape ;
sh:targetClass :Album ;
sh:property [

sh:path :track;
sh:minCount 1 ;

] ;
.

• Cardinality constraints refer to the expected range of property occurrences on a focus node

• sh:minCount and sh:maxCount are inclusive

• Consider qualified value shapes to restrict (qualify) the value of the counted property

https://www.w3.org/TR/shacl/#core-components-count
https://www.w3.org/TR/shacl/#QualifiedValueShapeConstraintComponent

Value Type Constraints / Property Shapes

 Property range # The release date of an album must be a
valid xsd:date (for date-based queries)

:AlbumDateTypeShape
a sh:NodeShape ;
sh:targetClass :Album;
sh:property [

sh:path :date ;
sh:datatype xsd:date ;

] ;
.

• Value type constraints restrict the type of value nodes to a data-type or class

• Constraint applicable to property and node shapes (e.g. as part of qualified constraints)

• Class constraint matches given class and its superclasses (rdf:type/rdfs:subClassOf* $class)

• Multiple values for sh:class are interpreted as a conjunction, use sh:or for alternatives

https://www.w3.org/TR/shacl/#core-components-value-type

Value Type Constraints / Node Shapes

 Node kind # An album should use IRIs to refer to
the producer instead of a literal name

:AlbumProducerKindShape
a sh:NodeShape ;
sh:targetClass :Album ;
sh:property [

sh:path :producer ;
sh:node [

sh:nodeKind sh:IRI;
]

] ;
.

• Node kind constraints enforce the generic (RDF) type of value nodes targeted by a node shape

• At most one sh:nodeKind constraint may be defined per shape

• The value range is a set of (combined) RDF term identifiers (IRIs, literals and blank nodes)

https://www.w3.org/TR/shacl/#NodeKindConstraintComponent
https://www.w3.org/TR/rdf11-concepts/#dfn-rdf-term

Property Pair Constraints (1/2)

 Less than # The end date should follow the start of a tour
:TourDatesShape

a sh:NodeShape ;
sh:targetClass :Tour;
sh:property [

sh:path :start ;
sh:datatype xsd:date ;
sh:lessThan :end ;

] ;
sh:property [

sh:path :end ;
sh:datatype xsd:date ;

].

• Property pair constraints relate all value nodes for given path to all values of a sibling property

• Depending on the constraint values in both sets are required to either:

• Overlap (sh:equals), be disjoint (sh:disjoint) or be less (or equal) w.r.t to the other set

•

https://www.w3.org/TR/shacl/#core-components-property-pairs

Property Pair Constraints (2/2) / Outline

Focus node

 sh:equals

p p’(sh:path) (sh:equals)

Focus node

 sh:disjoint

p p’(sh:path) (sh:disjoint)

Value
nodes

Object
values

Value Constraints

 Same value # A rock album should indicate appropriate genre

:RockAlbumShape
a sh:NodeShape ;
sh:targetClass :RockAlbum;
sh:property [

sh:path :genre ;
sh:hasValue genre:RockMusic ;

] .

• Value constraints require the value node to be equal to a given value or included in a value set

• At least one value node must equal to the sh:hasValue property

• Alternatively, each value node must be a member of the sh:in list

Value Range Constraints

 Value range # A track should indicate a plausible length
(i.e., a non-zero duration in seconds)

:SongLengthShape
a sh:NodeShape ;
sh:targetClass :Song ;
sh:property [

sh:path :length ;
sh:datatype xsd:integer ;
sh:minExclusive 0 ;

] ;
.

• Value range constraints specify the lower and upper bounds of comparable literal values

• Supported are, among others, the numeric and date XSD data-types (xsd:date, xsd:integer)

• Failures to compare incompatible data-types (xsd:string vs. xsd:date) result in validation error

https://www.w3.org/TR/shacl/#core-components-range

String-Based Constraints

 Unique language # Each skos:Concept (genre) should have
a unique label per language

:ConceptUniquePrefLabel
a sh:NodeShape ;
sh:targetClass skos:Concept ;
sh:property [

sh:path skos:prefLabel ;
sh:uniqueLang "true"^^xsd:boolean

] ;
.

• String-based constraints specify various tests on textual value nodes

• sh:flags ("ism") optionally modifies the RegEx pattern in sh:pattern ("^(has|is)[A-Z].*")

• sh:languageIn requires the language tag of literals to match prescribed values ("en" "de")

• sh:uniqueLang when set to true prohibits multiple literals per focus node and language

https://www.w3.org/TR/shacl/#core-components-string
https://www.w3.org/TR/xpath-functions/#flags
https://www.w3.org/TR/xpath-functions/#regex-syntax
https://www.w3.org/TR/rdf11-concepts/#section-Graph-Literal

Logical Constraints (1/2)

 Negation # the classes Album and Song are disjoint,
i.e., do not have any instances in common

:AlbumShape a sh:NodeShape ;
 sh:targetClass :Album ;
 sh:not [sh:class :Song]
.

• Logical constraints relate constraints via the logical operators ‘and’, ‘or’, ‘not’, ‘exclusive or’

• Depending on the operator either:

• none (sh:not), all (sh:and), at least one (sh:or) or exactly one (sh:xone) constraints apply

• sh:not refers to a single (negated) shape, other logical constraints operate on lists of shapes

https://www.w3.org/TR/shacl/#core-components-logical

Logical constraints (2/2)

 Exclusive OR # An artist record should either contain
the full name or the first and last name

:SoloArtistNameVariantConstraint
a sh:NodeShape ;
sh:targetClass :SoloArtist ;
sh:xone (

[
sh:property [

sh:path ex:fullName ;
sh:minCount 1 ;

]
]
[

sh:property [
sh:path ex:firstName ;
sh:minCount 1 ;

] ;
sh:property [

sh:path ex:lastName ;
sh:minCount 1 ;

]
]

) .

Node shape

Property shape

SPARQL Extension / Outline

SPARQL-Based Constraints

• Advanced tests on focus nodes expressed via SPARQL SELECT queries

 SPARQL constraint

Warn about albums with a high number of tracks
:AlbumTrackShapeSparql
 a sh:NodeShape ; # Apply to both, node and property shapes
 sh:targetClass :Album ;
 sh:sparql [
 a sh:SPARQLConstraint ; # optional type statement
 sh:prefixes tut: ; # reference to a prefix declaration
 sh:severity sh:Warning ;
 sh:message "Album with a high number of tracks (25+)" ;
 sh:select """
 # Query should specify dataset (graphs) it operates upon
 SELECT $this (tut:track AS ?path) (COUNT(?track) as ?value)

WHERE {
 $this tut:track ?track .
 }
 GROUP BY $this ?value
 HAVING (?value > 25)
 """;
] .

• Examples: complex graph
traversals, filter conditions,
or aggregations.

• Variable $this pre-bound to
focus node being validated

• Query solutions are used to
generate validation results

• Variable ?path mapped to
sh:resultPath (optional)

• Variable ?value mapped to
sh:value of the report (optional)

SPARQL-Based Constraints / Prefix Definition

• Namespace prefixes for use within SPARQL queries are declared via sh:PrefixDeclaration

• Conventially attached to an owl:Ontology instance via the sh:declare predicate

• SPARQL constraint refers to the same instance via the sh:prefixes predicate

 Prefix declaration

@prefix tut: <http://stardog.com/tutorial/> .
@prefix sh: <http://www.w3.org/ns/shacl#> .

tut:
 a owl:Ontology ;
 sh:declare [
 a sh:PrefixDeclaration ;
 sh:prefix "tut" ; # String
 sh:namespace "http://stardog.com/tutorial/"^^xsd:anyURI ;
] .

Prefix reference

:AlbumTrackShapeSparql
 a sh:NodeShape ;
 sh:targetClass :Album ;
 sh:sparql [
 sh:prefixes tut:
 # ...
] .

SPARQL-Based Constraints / Example

 SPARQL Constraint # Detect concept hierarchy cycles
:ConceptHierarchyCyclesShape

a sh:NodeShape ;
sh:targetClass skos:Concept ;
sh:sparql [

a sh:SPARQLConstraint ;
 sh:message "Cyclic hierarchical link detected" ;

sh:select """
 # Inline prefix definition

 prefix skos: <http://www.w3.org/2004/02/skos/core#>
select distinct $this where {

 {
 $this skos:narrower+ ?narrower .
 ?narrower skos:narrower+ $this
 }
 union
 {
 $this skos:broader+ ?broader .
 ?broader skos:broader+ $this
 }
 }

""";
] .

Concept hierarchy

Constraint Generation / CLI

• Generate an initial version of SHACL shapes from the schema

stardog data model --input owl --output shacl music

 RDF Schema

:Album a rdfs:Class .

:artist a rdf:Property ;
 rdfs:domain :Album ;
 rdfs:range :Artist .

:track a rdf:Property ;
 rdfs:domain :Album ;
 rdfs:range :Song .

:date a rdf:Property ;
 rdfs:domain :Album ;
 rdfs:range xsd:date .

Generated shapes

:Album a sh:NodeShape , rdfs:Class ;
 sh:property [
 sh:path :artist ;
 sh:class :Artist
] , [
 sh:path :track ;
 sh:class :Song
] , [
 sh:path :date ;
 sh:datatype xsd:date
] .

Constraint Operations / CLI

a) Maintain constraints as an external resource (file)

• No need to persist in the database for on-demand validation

• Most recent version supplied via Studio editor or CLI argument

b) Persist the constraints in Stardog (custom named graph) for on-commit validation

• SHACL is RDF so stardog data add / remove commands apply

stardog icv report music constraints.ttl

stardog data add --named-graph urn:graph:constraints music constraints.ttl

stardog data remove --named-graph urn:graph:constraints music

stardog icv report music

Constraint Usage / Studio

 Select SHACL as content type in editor

 Click Get Validation Report to submit content
 of the editor window as constraints

 Editor window for developing SHACL shapes

 Validation report based on shapes supplied
 in the editor window (or stored in the DB,
 when empty)

Evaluate

Validation Report

 Conformance report [a sh:ValidationReport ;
sh:conforms true ;

] .

 Issue report

_:report a sh:ValidationReport ;
 sh:conforms false .

_:report sh:result _:result1 .

_:result1 a sh:ValidationResult ;
 sh:resultSeverity sh:Violation ;
 sh:sourceShape :ConceptHierarchyCyclesShape ;
 sh:sourceConstraint _:constraint ;
 sh:sourceConstraintComponent sh:SPARQLConstraintComponent
;
 sh:focusNode genre:PopularMusic ;
 sh:value genre:PopularMusic ;
 sh:resultMessage "Cyclic hierarchical link detected" .

Report Overview

• sh:conforms – true if no validation results (regardless of severity) were produced

• sh:result - links the report to individual test results (sh:ValidationResult)

• sh:sourceShape – immediate shape that generate the result (often a blank node)

• sh:resultSeverity - (user defined) severity of the result, instance of sh:Severity class

• sh:sourceConstraintComponent – SHACL constraint component that has been violated

• sh:focusNode – node that produced the results i.e., the potentially problematic node

• sh:value – identifies what value was reported by the shape

• sh:resultPath – identifies how the (incorrect) value is connected to the focus node

• RDF terms linked by above 3 predicates represent the objected triple in data graph:

{sh:focusNode} -{sh:resultPath}-> {sh:value}

• Consider those for retrieving additional context in report queries

Report Evaluation

• Create, store and query the validation report

 stardog icv report music > report.ttl

stardog data add --named-graph urn:graph:report music report.ttl

stardog query execute music report_query.rq

Report Query

select ?shape (count(distinct ?focusNode) as ?count) ?message
where {
 graph <urn:graph:report>
 {
 ?result
 a sh:ValidationResult ;
 sh:resultSeverity sh:Violation ;
 sh:sourceShape ?shape ;
 sh:focusNode ?focusNode ;
 sh:resultMessage ?message ;
 }
}
group by ?shape ?path ?message
order by desc(?count)

Query stored report

Demo

Resources

• Data Quality Vocabulary (DQV), W3C Note

• RDF Data Quality Assessment (presentation)

• Chapter 5, SHACL, in Validating RDF Data (online resource)

• Shapes Constraint Language (SHACL), W3C Recommendation

• SHACL Playground

• Data Validation and SHACL (webinar)

• Improve data quality with SHACL

• ICV Examples

https://www.w3.org/TR/vocab-dqv/
https://www.slideshare.net/ConnectedDataLondon/rdf-data-quality-assessment-connecting-the-pieces-123783525
http://book.validatingrdf.com/bookHtml011.html
http://book.validatingrdf.com/
https://www.w3.org/TR/shacl/
https://shacl.org/playground/
https://www.stardog.com/trainings/data-validation-and-shacl/
https://www.stardog.com/platform/features/data-quality-shacl/
https://github.com/stardog-union/stardog-examples/tree/develop/examples/cli/icv

Learning Objectives

Learning
Objectives

Asses quality requirements for various kinds of data

Understand the concept of data quality and why it matters

Apply appropriate means to assess quality of data

Evaluate, communicate and act upon data quality reports

Operate Stardog to ensure quality of integrated data

Thank you

