
Jaroslav Pullmann
Solutions Architect

Taught by:

Reasoning
Make implicit information explicit

Learning
Objectives

Understand the benefits of logical reasoning

Become familiar with modeling standards

Learn about the means to unveil implicit information

Overview

• Derive new facts (inferences) from the existing, asserted statements

• Leverage definitions (axioms) of the domain (schema, ontology)

• Perform logical inference based on proven formalism (Description Logic)

• Make implicit information explicit

• Infer new facts, e.g. classify resources or compute values

• Reshape and align data

• Create views and links between nodes

• Derive explainable results

• Compare to statistical inference

• Verify the correctness of domain model

Relevant Standards

Source: https://en.wikipedia.org/wiki/Semantic_Web_Stack

• Multiple layers of standards involved

• Each adding expressivity to reasoning

• RDF - Instance data (facts)

• RDFS - Class and property hierarchies

• OWL - Expressive class definitions

• SWRL - Rules and functions

Resource Description Framework (RDF)

• Basic vocabulary for expressing RDF statements

• Triples of “subject”, “predicate”, and “object“

• Triple arguments are IRIs (depicted as ellipses) or literals (rectangles)

• Properties (rdf:Property) as a distinguished set of IRIs (attribute or relationship)

• rdf:type - links an instance to corresponding class (rdfs:Class)

• rdf:value - standard value attribute of structured (blank) nodes

RDF Schema

• Data modeling vocabulary for RDF (extension of RDF vocabulary)

• Classes (e.g., rdfs:Class, rdfs:Literal) and class hierarchies (rdfs:subClassOf)

• Set of instances (resources) with common characteristics

• Datatypes (rdfs:Datatype)

• Set of literals of corresponding type (XML Schema or custom)

• Properties (rdf:Property) and property hierarchies (rdfs:subPropertyOf)

• Range of applicable classes (rdfs:domain) and values (rdfs:range)

https://www.w3.org/TR/rdf-schema/

RDF Schema / Hierarchy Inference

• Match classes, properties down the hierarchy via rdfs:subClassOf and rdfs:subPropertyOf

• Hierarchy traversal with SPARQL property path: rdf:type/rdfs:subClassOf*

 RDFS Schema

:Artist a rdfs:Class .
:Band a rdfs:Class ;

rdfs:subClassOf :Artist .
:Person a rdfs:Class .
:SoloArtist a rdfs:Class ;
 rdfs:subClassOf :Artist, :Person .

 RDF Instance data

:The_Beatles rdf:type :Band .
:The_Beatles :member :John_Lennon .
:John_Lennon rdf:type :SoloArtist .

 SPARQL Query examples

select * { ?artist rdf:type :Person }

select * { ?artist rdf:type :Artist }

select * { ?artist
 rdf:type/rdfs:subClassOf* :Artist }

RDF Schema / Domain & Range Inference

• rdfs:domain / rdfs:range axioms will infer type of property’s subject / object

 Example RDFS Inference # Schema

:track a rdf:Property ;
rdfs:label "track" ;
rdfs:comment "A song included in an album." ;
rdfs:domain :Album ;
rdfs:range :Song .

Asserted triple
:Let_It_Be :track :Across_the_Universe .

Inferred triples
:Let_It_Be rdf:type :Album .
:Across_the_Universe rdf:type :Song .

Web Ontology Language (OWL)

• Logic-based language for formal description and machine reasoning about RDF resources

• Distinction of relations (owl:ObjectProperty) and attributes (owl:DatatypeProperty)

• Characteristics of properties (e.g. uniqueness via owl:FunctionalProperty)

• Logical relationships among modelling constructs (classes, datatypes, properties, instances)

• For example, equivalence, intersection, or disjointness

• Captures the meaning of classes via structural expressions

• Based on values or cardinality of properties

 Example OWL 2 axioms # Equivalence of classes (same concepts)

a:Song owl:equivalentClass b:Song .

Equivalence of individuals (same instances)
dbr:Ringo_Starr owl:sameAs dbr:Richard_Starkey

https://www.w3.org/TR/owl2-primer/

OWL 2 Class Axioms

• Class is a set of instances with common characteristics

• Relationships between classes are expressed in terms of set theory

 rdfs:subClassOf owl:disjointWith owl:equivalentClass

• Extension (instance set) of a superclass includes extensions of its subclasses

• Equivalent classes share the same extension, i.e., the same set of instances

• Disjoint classes represent incompatible concepts and have no instances in common

• Membership in one class excludes membership in the disjoint class

https://www.w3.org/TR/owl2-quick-reference/#Axioms

OWL 2 Class Expressions / Restrictions

• In RDF, properties are IRIs with a “global” visibility and definition (rdfs:domain, rdfs:range)

• OWL 2 Class expressions define class extensions based on local property restrictions

• Instances of owl:Restriction refer to constrained property via owl:onProperty

 OWL 2 Class expression # An Album has at least one track (Song)

[
rdf:type owl:Restriction ;
owl:onProperty :track ;
owl:someValuesFrom :Song

] rdfs:subClassOf :Album

• Existential quantification (owl:someValuesFrom) requires at least one value of given type

• Universal quantification (owl:allValuesFrom) requires all known values be of given type

• Cardinality restrictions (e.g. owl:cardinality) restrict the number of distinct property values

• Note: OWL 2 profiles do not support arbitrary cardinatlity restrictions

OWL 2 Class Expressions (2)

• Value restrictions (owl:hasValue) require the property to have at least the given value

• Enumeration of individuals (owl:oneOf) defines a class by an exhaustive listing of instances

• Any further asserted instances make the database inconsistent

 Value restriction # A rock album has the genre Rock Music

[
rdf:type owl:Restriction ;
owl:onProperty :genre ;
owl:hasValue genre:RockMusic

] rdfs:subClassOf :RockAlbum .

 Instance enumeration # Specify Beatles members (class extension) by enumeration

:BeatlesMember
 rdf:type owl:Class ;
 owl:oneOf (dbr:John_Lennon dbr:Paul_McCartney ...).

OWL 2 Class Definitions

• Use class axioms to define a named class (C) based on a restriction (R)

• Necessary and sufficient condition needs to hold to classify individual (I)

1. C rdfs:subClassOf R

1. C ⊂ R: Sufficient condition not met (C can’t be distinguished from D)

2. R ⊂ C: Necessary and sufficient condition met, I classified as C when matching R

3. R ≡ C: Necessary and sufficient condition met, I classified as C when matching R

Use equivalent classes with care. Test whether they have the same meaning in all contexts

3. C owl:equivalentClass R

R

C

2. R rdfs:subClassOf C

C

R
R

C
D D

OWL 2 Class Definition / Example

• Having genre :RockMusic is one of the conditions for an :Album to classify as :RockAlbum

• Alternative conditions to classify as :RockAlbum may exist (independently of genre)

• Having genre :RockMusic is exactly the condition for an :Album to classify as :RockAlbum

• Genre :RockMusic is inferred for any :RockAlbum

 R rdfs:subClassOf C :RockAlbum rdfs:subClassOf :Album .

[
rdf:type owl:Restriction ;
owl:onProperty :genre ;
owl:hasValue :RockMusic

] rdfs:subClassOf :RockAlbum .

 C owl:equivalentClass R :RockAlbum rdfs:subClassOf :Album .

[...

] owl:equivalentClass :RockAlbum .

 owl:complementOf

OWL 2 Class Expressions / Complex Classes

• Logical class constructors combine class expressions via logical operators and, or, and not

 rdfs:unionOf owl:intersectionOf

• Intersection (conjunction) of two classes are individuals that are instances of both classes

• Equivalent to: C rdfs:subClassOf A . C rdfs:subClassOf B .

• Union (disjunction) of two classes consists of instances of at least one of the classes

• Equivalent to: A rdfs:subClassOf C . B rdfs:subClassOf C .

• Complement (negation) of a class are individuals which are not members of that class

• Equivalent to: A owl:disjointWith C .

B
A

C

C

A
B A

C

OWL 2 Class Definition / Example (2)

Logical class constructor # A rock band is a band with at least one rock album

:RockBand owl:equivalentClass
 [a owl:Class ;

 owl:intersectionOf (
 :Band

 [a owl:Restriction;
 owl:onProperty :hasAlbum;
 owl:someValuesFrom [

 a owl:Restriction;
 owl:onProperty :genre;
 owl:hasValue :Rock

]
]
)
] .

OWL 2 Property Axioms / Overview

• Axioms for relations only
• owl:propertyChainAxiom

• owl:inverseOf

• Characteristics of relations

• owl:InverseFunctionalProperty

• owl:ReflexiveProperty

• owl:IrreflexiveProperty

• owl:SymmetricProperty

• owl:AsymmetricProperty

• Axioms for relations and attributes

• rdfs:subPropertyOf

• rdfs:domain

• rdfs:range

• owl:equivalentProperty

• owl:propertyDisjointWith

• Characteristics of attributes and relations

• owl:FunctionalProperty

• OWL differentiates attributes (owl:DatatypeProperty) and relations (owl:ObjectProperty)

• Axioms mutually relate properties or describe characteristics of a single property

Equivalent and disjoint Properties

• Equivalent properties are aliases that may be used interchangeably

• Connect the same sets of individuals

• Consider extending a property (rdfs:subPropertyOf) if it does not share all implications

 :author owl:equivalentProperty :writer . # Definition
 :Queenie_Eye :writer :Paul_McCartney . # Assertion
 :Queenie_Eye :author :Paul_McCartney . # Inference

• Disjoint properties must not be used interchangeably

• Connect distinct sets of individuals (individuals assumed to be mutually different)

• As disjointness primarily targets validation we recommend using SHACL (sh:disjoint)

 :father owl:propertyDisjointWith :uncle . # Definition

Inverse Properties

• RDF is a directed labeled graph, properties link subjects to objects of statements (triples)

• Properties are directional (:writer links Song to Songwriter)

• Inverse property flips the direction of a property

• :writerOf links Songwriter to Song (i.e., from object to subject of the inverted property)

:Paul_McCartney:Queenie_Eye
:writer

:writerOf

 :writerOf owl:inverseOf :writer . # Definition
 :Queenie_Eye :writer :Paul_McCartney . # Assertion
 :Paul_McCartney :writerOf :Queenie_Eye . # Inference

 select ?song where { :Paul_McCartney ^:writer ?song }# SPARQL, inverse property path

Property Chain

• Infer a new relation between two nodes connected via a property chain (enumerated path)

• There may be arbitrary number of relations in the chain (asserted and inferred)

 :cowriter owl:propertyChainAxiom (:writerOf :writer) # Definition
 :Paul_McCartney :writerOf :Queenie_Eye. # Assertions
 :Queenie_Eye :writer :Paul_Epworth .
 :Paul_McCartney :cowriter :Paul_Epworth . # Inference

:Paul_McCartney

:Queenie_Eye :cowriter

:writerOf

:Paul_Epworth:writer

 select ?cowriter where { :Paul_McCartney :writerOf / :writer ?cowriter } # SPARQL

Transitive Properties

• Infer a new edge between two nodes connected via a path of the same property

• Special case of a property chain (path of arbitrary length)

 :connectedTo a owl:TransitiveProperty . # Definition
 :Paul_McCartney :connectedTo :Paul_Epworth . # Assertions
 :Paul_Epworth :connectedTo :Adele .
 :Paul_McCartney :connectedTo :Adele . # Inference

:Paul_McCartney :Paul_Epworth
:connectedTo

:Adele
:connectedTo

:connectedTo

 select ?contact where {:Paul_McCartney :connectedTo+ ?contact }#SPARQL property path

Reflexive / Irreflexive Properties

• Reflexive properties relate an individual to itself (subject and object is the exact same node)

• Used, e.g., with mereological (containment) relations (anything is trivially part of itself)

 :partOf a owl:ObjectProperty , owl:ReflexiveProperty . # Definition

:Abbey_Road

:partOf

• In contrast, irreflexive properties are known to connect distinct individuals only

• The same individual cannot be related to itself via an irreflexive property

• As with owl:propertyDisjointWith axiom we recommend using SHACL (sh:disjoint)

 :childOf a owl:ObjectProperty , owl:IrreflexiveProperty . # Definition

Symmetric Properties

• Symmetric properties are bidirectional (direction is irrelevant)

• :connectedTo relationship will hold in both directions

 :connectedTo a owl:ObjectProperty , owl:SymmetricProperty . # Definition
 :Adele :connectedTo :Paul_McCartney . # Assertion
 :Paul_McCartney :connectedTo :Adele . # Inference

 select ?p1 ?p2 where { ?p1 :connectedTo | ^:connectedTo ?p2 } # SPARQL, alt. path

:Paul_McCartney:Adele

• A symmetric property is its own inverse

:connectedTo

Functional Properties / Unique Values

• Functional properties reference a value unique per resource, e.g., publication date

• There is at most one outgoing property occurrence (referred triple object)

• For validation of functional values consider SHACL sh:maxCount constraint

 # An album should have only one date
 :date rdf:type owl:DatatypeProperty , owl:FunctionalProperty .
 :Abbey_Road :date "1969-09-26"^^xsd:date .

An album should have only one date
:date a owl:DatatypeProperty, owl:FunctionalProperty .

• Inverse functional properties reference a globally unique value, e.g., ISBN number

• There at most one incoming property occurrence (referring triple subject)

• Consider a combination of sh:maxCount and sh:inversePath SHACL constraints for validation

 # A medium (CD, book) is uniquely identified by an International Standard Book Number
 :isbn13 rdf:type owl:ObjectProperty , owl:InverseFunctionalProperty .
 :Abbey_Road :isbn13 isbn:978-1608199990 .

Inverse Functional Property / Validation (1)

 OWL / RDF

General schema axioms
:isbn13 rdf:type

owl:ObjectProperty ,
owl:InverseFunctionalProperty .

Asserted instance data
:Abbey_Road :isbn13 isbn:978-1608199990 .
:Other_Album :isbn13 isbn:978-1608199990 .

Non-unique Naming Assumption
#
In RDF/OWL different IRIs do not necessarily refer to
distinct resources since no coordination of (unique)
resource naming on global scale is assumed.
We’ll need to explicitly differentiate individuals
and assert disjointness of "Abbey Road" and "Other Album":

:Abbey_Road owl:differentFrom :Other_Album .

OWL Consistency check: Values of :isbn13
property are stated to uniquely identify
a resource (owl:InverseFunctionalProperty).

Resources with the same :isbn13 value
could be inferred to be equivalent. Due
to non-unique naming assumption we’ll
need to explicitly differentiate them via
owl:differentFrom axiom.

Using the DL (Description Logic) reasoning
mode Stardog will detect an inconsistency:

$stardog reasoning explain --inconsistency music

INFERRED
 ASSERTED :Other_Album :isbn13 isbn:978-1608199990
 ASSERTED :Abbey_Road :isbn13 isbn:978-1608199990
 ASSERTED :Abbey_Road owl:differentFrom :Other_Album
 ASSERTED :isbn13 a owl:InverseFunctionalProperty

https://www.w3.org/TR/owl2-primer/#Equality_and_Inequality_of_Individuals

Inverse Functional Property / Validation (2)

ISBN is expected to be globally unique,
report any ISBN reused for distinct albums

select ?isbn (count(distinct ?album) as ?count) {
 ?album :isbn13 ?isbn
}group by ?isbn having (?count > 1)

 SPARQL

 SHACL # Looking at identifier resources (validation target)

require at most at most one (inverse) link to an album

:ISBNShape
a sh:NodeShape ;
sh:targetObjectsOf :isbn13 ;
sh:property [

sh:path [sh:inversePath :isbn13] ;
sh:maxCount 1 ;

] .

Unique Values / Keys

• (Complex) instance key

• Set of predicates which values jointly constitute a unique identifier of a class instance

• Defined as a list of predicates (data and object properties) on a class expression

 # A piece of media should be uniquely identified by an ISBN
 :MusicCD rdfs:subClassOf :Medium . :Medium owl:hasKey (:isbn13) .

OWL Property Axioms / Alternatives

• Axioms recommended for reasoning:

• rdfs:subClassOf

• rdfs:subPropertyOf

• owl:inverseOf

• owl:propertyChainAxiom

• owl:TransitiveProperty

• owl:SymmetricProperty

• Alternative: SPARQL Property Paths

• Number of RDFS/OWL axioms initially designed for validation (consistency checking)

• Validation axioms:

• rdfs:domain

• rdfs:range

• owl:FunctionalProperty

• owl:InverseFunctionalProperty

• owl:IrreflexiveProperty

• owl:ReflexiveProperty

• Alternative: SHACL

• See OWL - SHACL Comparision

https://www.w3.org/TR/sparql11-query/#propertypaths
https://www.w3.org/TR/shacl/
https://spinrdf.org/shacl-and-owl.html

Axioms on Individuals / owl:sameAs

• Declare different resources (IRIs) to represent the same entity

• Nodes will be merged at logical level

• owl:sameAs predicate is:

:Ringo_Starr owl:sameAs dbr:Ringo_Starr, dbr:Richard_Starkey .

reflexive

symmetric

transitive :Ringo_Starr

dbr:Ringo_Starr

dbr:Richard_Starkey

owl:sameAs / Canonical IRI

• One canonical individual selected from each owl:sameAs equivalence set (aliases)

• Chosen randomly, but fixed until the set has changed (updates to data or schema)

• Only the canonical individual (one hit) returned by queries regardless of the set size

• Queries may use any (asserted or inferred) alias, not only the canonical one

• Query for aliases via owl:sameAs predicate

 select * where { dbr:Richard_Starkey ?p ?o } # :Ringo_Starr is the canonical IRI

 select ?otherAliases { dbr:Richard_Starkey owl:sameAs ?otherAliases }

owl:sameAs / Implementation

• owl:sameAs inferences are computed and indexed eagerly (materialized)

• owl:sameAs index is updated automatically when the database changed

• configuration option reasoning.sameas defining the reasoning type:

OFF - no inferences, only asserted owl:sameAs triples will be included in query results

ON - extends asserted owl:sameAs predicate by its reflexivity, symmetry and transitivity

FULL - extends the above by functional, inverse functional properties, and hasKey axioms

owl:sameAs / Example

 sameAs reasoning types

sameAs via transitivity/symmetry, type ON

:Ringo_Starr owl:sameAs dbr:Ringo_Starr, dbr:Richard_Starkey .

:isbn13 a owl:DatatypeProperty , owl:InverseFunctionalProperty ;

same by inverse functional property, type FULL
:Abbey_Road :isbn13 isbn:978-1608199990 .
:my_album :isbn13 isbn:978-1608199990 .

:producer a owl:ObjectProperty , owl:FunctionalProperty ;
:Album owl:hasKey (:date :producer) .

same via key, type FULL

:Abbey_Road :date "1969-09-26"^^xsd:date ; :producer :George_Martin .
:my_other_album :date "1969-09-26"^^xsd:date ; :producer :George_Martin .

Rule-based Reasoning

• Reasoning based on user-defined rules to augment OWL axioms

• IF/THEN constructs with condition and consequence expressed in terms of graph patterns

 Stardog Rule Syntax

Abstract syntax
IF { condition } THEN { consequence }

Classifies a band based on the :genre value

IF {
?band a :Band .
?album a :Album ;

:artist ?band ;
:genre genre:Rock .

}
THEN {
 ?band a :RockBand
}

Rules-based Reasoning / Benefits (1)

• Rules may build upon each other (without cycles) introducing layers of abstraction

• Rules may maintain a stable data contract thanks to the inferred data structure

• Updates to instance data will not break query graph patterns based on rules

 Layers of Abstraction

Rule 1 Rule 2

Rule 3

x

Rules-based Reasoning / Benefits (2)

• Rules hide complexity of the data and implementation details

• Classify resources based on their attributes

• Compute values of inferred properties

•

 Stardog Rule Inference if{

?album a :Album ; :track ?track .
?track :length ?length
filter(?length > 3600) # longer than 1 hour
bind(round((?length / 3600)) as ?lengthInHours)

}

then{
Classify the individual
?track a :LongTrack ;
Infer computed value
:lengthInHours ?lengthInHours .

}

Schema Management

• Reasoning depends on schema information and rules present in the database

• These are just RDF triples, loaded like any graph data (e.g., data add command)

• “Schema graphs” identified by the database property reasoning.schema.graphs

• Comma-separated list of named graph IRIs, including the special named graphs

• Used for reasoning with default schema

• Reasoning with multiple, custom schemas (schema multi-tenancy)

• “Schema”: named, custom set of named graphs (selected at query time)

• Rationale

• Compatibility: various versions of a schema used by (legacy or recent) applications

• Evolution: different rules and business logic, e.g. threshold value computation by rules

• Scalability and modularization: partitioning of a large number of axioms and rules

https://docs.stardog.com/inference-engine/#reasoning-with-multiple-schemas

Schema Management (2)

• Schemas defined via the configuration option reasoning.schemas

• Comma-separated collection of <schema name>=<named graph IRI> pairs

• Graphs for the default schema configured via reasoning.schema.graphs

• Schema management via CLI:

 select * where { dbr:Richard_Starkey ?p ?o } # :Ringo_Starr is the canonical IRI
 stardog reasoning schema --add musicSchema --graphs :charts :albums -- musicDb
 stardog reasoning schema --remove musicSchema -- musicDb
 stardog reasoning schema --list musicDb

Stardog Reasoning / Commands

• Reasoning is disabled by default, use -r (reasoning=true) or --schema paremeters to activate

--reasoning has the same effect as --schema default
$ stardog query execute --reasoning music "SELECT ?s { ?s a :RockAlbum } LIMIT 10"

$ stardog query execute --schema musicSchema music "SELECT ?s ..."

 CLI

curl -u admin:admin "http://localhost:5820/myDB/query?reasoning=true&query="..."

curl -u admin:admin "http://localhost:5820/myDB/query/reasoning?query=..."

 HTTP API

Debug Reasoning

• Stardog exposes explanations of an inference

• Minimum set of statements (asserted and inferred) to logically justify the inference

• Proof tree

• Explanation of an inference or an inconsistency as a hierarchical structure

• Multiple assertion nodes are grouped under an inferred node

• Merges related explanations into a single proof tree (merged proof tree)

• Alternatives for an explanation are shown with a number id

• For example 1.1 and 1.2 are both alternative explanations for inference 1

$ stardog reasoning explain music ":Abbey_Road a :RockAlbum"
INFERRED :Abbey_Road a :RockAlbum
 ASSERTED (:genre value genre:Rock) rdfs:subClassOf :RockAlbum
 ASSERTED :Abbey_Road :genre genre:Rock

https://docs.stardog.com/inference-engine/#explaining-reasoning-results

Reasoning in Stardog / Query Rewriting

• Reasoning in Stardog is performed at query time via query rewriting:

• Client queries are augmented with respect to selected reasoning schema and profile

• Reasoning schema: named set of (domain-specific) model statements (axioms)

• Reasoning profile: selection of modeling constructs and related inference rules

• Expanded query is executed against the dataset in a standard manner

• Scales well even for large datasets (pay for reasoning that you actually use)

• In contrast: Inference materialization expands the dataset with respect to a schema/profile

• Management issues: materialization on each schema update or reasoning profile

• Resource issues: materialization may be computationally expensive (CPU time)

• Scaling issues: significant increase of data size, I/O penalty applies to every query

• Exception to query rewriting: owl:sameAs reasoning is eagerly materialized

https://docs.stardog.com/inference-engine/#why-query-rewriting

Custom Inference Materialization

• Ingest inference results into database (a dedicated named graph) to improve query times

• Materialization will decouple the production of inferences from querying (no reasoning)

 # stardog query execute --reasoning store_inferences.rq
 DROP SILENT GRAPH <urn:inferences> ;
 INSERT {
 GRAPH <urn:inferences> {

... # store asserted and inferred results
 }
 }
 WHERE {
 ...
 }

 Store inferences

Demo

Resources

• OWL 2 Primer

• OWL 2 Quick Reference Guide

• OWL 2 Reference card (PDF)

• Video training on reasoning (by Stardog CTO Evren Sirin)

• Stardog reasoning documentation

• Stardog blog posts on reasoning

https://www.w3.org/TR/owl2-primer/
https://www.w3.org/TR/owl2-quick-reference/
https://www.w3.org/2007/OWL/refcardA4
https://www.stardog.com/trainings/reasoning-with-rdf-graphs-and-ontologies/
https://docs.stardog.com/inference-engine/
https://www.stardog.com/search/?query=reasoning

Learning
Objectives

Understand the benefits of logical reasoning

Become familiar with modeling standards

Learn about the means to unveil implicit information

Thank you

