Reasoning

Make implicit information explicit

Taught by:

JarosTav Pullmann
Solutions Architect

Learning
Objectives

Become familiar with modeling standards

Learn about the means to unveil implicit information

e

Understand the benefits of logical reasoning

m‘,ﬁ: STARDOG

Overview

Derive new facts (inferences) from the existing, asserted statements
Leverage definitions (axioms) of the domain (schema, ontology)
Perform |logical inference based on proven formalism (Description Logic)
Make implicit information explicit
Infer new facts, e.g. classify resources or compute values
Reshape and align data
Create views and links between nodes
Derive explainable results
Compare to statistical inference

Verify the correctness of domain model

~<%Z STARDOG

Relevant Standards

Multiple layers of standards involved User interface and applications

Each adding expressivity to reasoning

RDF - Instance data (facts)
Proof

RDFS - Class and property hierarchies

Unifying Logic

OWL - Expressive class definitions

Rules:
RIF/SWRL

Ontologies:
OWL

SWRL - Rules and functions

Querying:
SPARQL

Taxonomies: RDFS

AydeaboydAid

Data interchange: RDF

Syntax: XML

Identifiers: URI Character Set: UNICODE

,a‘,e'i STARDOG Source: https://en.wikipedia.org/wiki/Semantic_Web_Stack

Resource Description Framework (RDF)

Basic vocabulary for expressing RDF statements
Triples of “subject”, “predicate”, and “object”
Triple arguments are IRIs (depicted as ellipses) or literals (rectangles)
Properties (rdf:Property) as a distinguished set of IRIs (attribute or relationship)
rdf:type - links an instance to corresponding class (rdfs:Class)
rdf:value - standard value attribute of structured (blank) nodes

RDF Triple (statement)
G

S\

i Property (IRI) X i Property (IRI) . i
Subject (IRI) Object (IRI) Subject (IRI) Object (literal)

:track :date
:Let_It Be :Across_the_Universe :Let_It_Be "1970-05-08"~"xsd:date

o)

~<%Z STARDOG

RDF Schema

Data modeling vocabulary for RDF (extension of RDF vocabulary)

Classes (e.g., rdfs:Class, rdfs:Literal) and class hierarchies (rdfs:subClassoOf)
Set of instances (resources) with common characteristics

Datatypes (rdfs:Datatype)
Set of literals of corresponding type (XML Schema or custom)

Properties (rdf:Property) and property hierarchies (rdfs:subProperty0f)

Range of applicable classes (rdfs:domain) and values (rdfs:range)

Class hierarchies Property definition and hierarchies upper:hasPart

rdfs:subPropertyOf

rdfs:subClassOf rdfs:subClassOf

rdf:type

rdf:Property

~<%Z STARDOG

https://www.w3.org/TR/rdf-schema/

RDF Schema / Hierarchy Inference

Match classes, properties down the hierarchy via rdfs:subClassOf and rdfs:subPropertyOf

Hierarchy traversal with SPARQL property path: rdf:type/rdfs:subClassOf*

SPARQL Query examples

-Artist a rdfs:Class . select * { ?artist rdf:type :Artist }

:Band a rdfs:Class ;
rdfs:subClassOf :Artist
:Person a rdfs:Class
a rdfs:Class ;
rdfs:subClassOf :Artist, :Person

RDFS Schema

select * { 2artist
rdf:type/rdfs:subClassOf* :Artist }

artist

:The_Beatles
:John_Lennon

RDF Instance data select * { ?artist rdf:type :Person }

:The Beatles rdf:type :Band . 5
:The Beatles :member :John Lennon .
= = :John_Lennon
:John Lennon rdf:type . SR

m‘,&: STARDOG

RDF Schema / Domain & Range Inference

rdfs:domain/ rdfs:range axioms will infer type of property’s subject / object

Example RDFS Inference # Schema
:track a rdf:Property ;
rdfs:label "track" ;
rdfs:comment "A song included in an album." ;
rdfs:domain :Album ;
rdfs:range

Asserted triple
:Let_It Be :track

Inferred triples
:Let_It Be rdf:type :Album
rdf:type

m‘,ﬁ: STARDOG

Web Ontology Language (OWL)

Logic-based language for formal description and machine reasoning about RDF resources

Distinction of relations (owl:0bjectProperty) and attributes (owl:DatatypeProperty)

Characteristics of properties (e.g. uniqueness via owl:FunctionalProperty)

Logical relationships among modelling constructs (classes, datatypes, properties, instances)
For example, equivalence, intersection, or disjointness

Captures the meaning of classes via structural expressions

Based on values or cardinality of properties

Example OWL 2 axioms # Equivalence of classes (same concepts)
a:Song owl:equivalentClass b:Song .

Equivalence of individuals (same instances)
dbr:Ringo Starr owl:sameAs dbr:Richard Starkey

~<%Z STARDOG

https://www.w3.org/TR/owl2-primer/

OWL 2 Class Axioms

Class is a set of instances with common characteristics

Relationships between classes are expressed in terms of set theory

rdfs:subClassOf owl:equivalentClass owl:disjointWith

> @ e

Extension (instance set) of a superclass includes extensions of its subclasses

Equivalent classes share the same extension, i.e., the same set of instances
Disjoint classes represent incompatible concepts and have no instances in common

Membership in one class excludes membership in the disjoint class

,7‘,&: STARDOG

https://www.w3.org/TR/owl2-quick-reference/#Axioms

OWL 2 Class Expressions / Restrictions

In RDF, properties are IRIs with a “global” visibility and definition (rdfs:domain, rdfs:range)
OWL 2 Class expressions define class extensions based on local property restrictions
Instances of owl:Restriction refer to constrained property via owl:onProperty

OWL 2 Class expression # An Album has at least one track (Song)
[

rdf:type owl:Restriction ;

owl :onProperty :track ;
owl : someValuesFrom :Song

] rdfs:subClassOf :Album

Existential quantification (owl:someValuesFrom) requires at least one value of given type
Universal quantification (owl:allValuesFrom) requires all known values be of given type
Cardinality restrictions (e.g. owl:cardinality) restrict the number of distinct property values

Note: OWL 2 profiles do not support arbitrary cardinatlity restrictions

~<%Z STARDOG

OWL 2 Class Expressions (2)

Value restrictions (owl:hasValue) require the property to have at least the given value

Value restriction # A rock album has the genre Rock Music

[
rdf:type owl:Restriction ;

owl :onProperty :genre ;
owl:hasValue genre:RockMusic

] rdfs:subClassOf :RockAlbum

Enumeration of individuals (owl:oneOf) defines a class by an exhaustive listing of instances

Any further asserted instances make the database inconsistent

Instance enumeration # Specify Beatles members (class extension) by enumeration
:BeatlesMember
rdf:type owl:Class ;
owl :oneOf dbr:John Lennon dbr:Paul McCartney

m‘,ﬁ: STARDOG

OWL 2 Class Definitions

Use class axioms to define a named class (C) based on a restriction (R)

Necessary and sufficient condition needs to hold to classify individual (1)

1. C rdfs:subClassOf R 2. R rdfs:subClassOf C 3. C owl:equivalentClass R

&) @& ‘@&

1. € C R:Sufficient condition not met (C can’t be distinguished from D)

2. R C C: Necessary and sufficient condition met, | classified as C when matching R
3. R = C: Necessary and sufficient condition met, | classified as C when matching R

Use equivalent classes with care. Test whether they have the same meaning in all contexts

~<%Z STARDOG

OWL 2 Class Definition / Example

Having genre :RockMusic is one of the conditions for an :Album to classify as :RockAlbum
Alternative conditions to classify as :RockAlbum may exist (independently of genre)

R rdfs:subClassOf C :RockAlbum rdfs:subClassOf :Album .
[

rdf:type owl:Restriction ;

owl:onProperty :genre ;
owl :hasValue :RockMusic

] rdfs:subClassOf :RockAlbum .

Having genre :RockMusic is exactly the condition for an :Album to classify as :RockAlbum
Genre :RockMusic is inferred for any :RockAlbum

C owl:equivalentClass R :RockAlbum rdfs:subClassOf :Album .
[

] owl:equivalentClass :RockAlbum .

m‘,ﬁ: STARDOG

OWL 2 Class Expressions / Complex Classes

Logical class constructors combine class expressions via logical operators and, or, and not

owliintersectionOf rdfs:unionOf owl:complementOf

@y, (@n) @@,

Intersection (conjunction) of two classes are individuals that are instances of both classes

Equivalentto: C rdfs:subClassOf A . C rdfs:subClassOf B .

Union (disjunction) of two classes consists of instances of at least one of the classes
Equivalentto: A rdfs:subClassOf C . B rdfs:subClassOf C .

Complement (hegation) of a class are individuals which are not members of that class

Equivalentto: A owl:disjointWith C .

~<%Z STARDOG

OWL 2 Class Definition / Example (2)

Logical class constructor # A rock band is a band with at least one rock album

:RockBand owl:equivalentClass
[a owl:Class ;
owl:intersectionOf (
:Band
[a owl:Restriction;
owl:onProperty :hasAlbum;
owl :someValuesFrom |
a owl:Restriction;
owl:onProperty :genre;
owl :hasValue :Rock

m‘,ﬁ: STARDOG

OWL 2 Property Axioms / Overview

OWL differentiates attributes (owl:DatatypeProperty) and relations (owl:0bjectProperty)
Axioms mutually relate properties or describe characteristics of a single property

Axioms for relations and attributes - Axioms for relations only

rdfs : subPropertyOf owl:propertyChainAxiom

rdfs:domain owl:inverseOf

rdfs:range Characteristics of relations

owl:equivalentProperty owl:InverseFunctionalProperty

owl:propertyDisjointWith owl:ReflexiveProperty

Characteristics of attributes and relations owl:IrreflexiveProperty

owl:FunctionalProperty owl:SymmetricProperty

owl:AsymmetricProperty

~<%Z STARDOG

Equivalent and disjoint Properties

Equivalent properties are aliases that may be used interchangeably
Connect the same sets of individuals

Consider extending a property (rdfs:subProperty0f) if it does not share all implications

:author owl:equivalentProperty :writer . # Definition

:Queenie Eye :writer :Paul McCartney . # Assertion
:Queenie Eye :author :Paul McCartney . # Inference

Disjoint properties must not be used interchangeably

Connect distinct sets of individuals (individuals assumed to be mutually different)

:father owl:propertyDisjointWith :uncle . # Definition

As disjointness primarily targets validation we recommend using SHACL (sh:disjoint)

~<%Z STARDOG

Inverse Properties

RDF is a directed labeled graph, properties link subjects to objects of statements (triples)

Properties are directional (:writer links Song to Songwriter)

. :writer
:Queenie_Eye

:writerOf

:Paul_McCartney

Inverse property flips the direction of a property

:writerOf links Songwriter to Song (i.e., from object to subject of the inverted property)

:writerOf owl:inverseOf :writer . # Definition
:Queenie Eye :writer :Paul McCartney . # Assertion
:Paul McCartney :writerOf :Queenie Eye . # Inference

select ?song where { :Paul McCartney “:writer ?song }# SPARQL, inverse property path

m‘,ﬁ: STARDOG

Property Chain

Infer a new relation between two nodes connected via a property chain (enumerated path)

There may be arbitrary number of relations in the chain (asserted and inferred)

:Paul_Epworth

:Queenie_Eye :cowriter

:writerOf :Paul_McCartney

:cowriter owl:propertyChainAxiom :writerOf :writer # Definition
:Paul McCartney :writerOf :Queenie Eye. # Assertions

:Queenie Eye :writer :Paul Epworth

:Paul McCartney :cowriter :Paul Epworth . # Inference

select ?cowriter where { :Paul McCartney :writerOf / :writer ?cowriter } # SPARQL

m‘,&: STARDOG

Transitive Properties

Infer a new edge between two nodes connected via a path of the same property

Special case of a property chain (path of arbitrary length)

:connectedTo :connectedTo
:Paul_McCartney :Paul_Epworth :Adele
:connectedT8__—_—--ﬂ#”,,,////////

:connectedTo a owl:TransitiveProperty . # Definition
:Paul McCartney :connectedTo :Paul Epworth . # Assertions
:Paul Epworth :connectedTo :Adele

:Paul McCartney :connectedTo :Adele . # Inference

select ?contact where {:Paul McCartney :connectedTo+ ?contact }#SPARQL property path

m‘,&: STARDOG

Reflexive / Irreflexive Properties

Reflexive properties relate an individual to itself (subject and object is the exact same node)

Used, e.g., with mereological (containment) relations (anything is trivially part of itself)

@
:Abbey_Road

:partOf a owl:0bjectProperty , owl:ReflexiveProperty . # Definition

INn contrast, irreflexive properties are known to connect distinct individuals only

The same individual cannot be related to itself via an irreflexive property

:childOf a owl:0ObjectProperty , owl:IrreflexiveProperty . # Definition

As with owl:propertyDisjointWith axiom we recommend using SHACL (sh:disjoint)

~<%Z STARDOG

Symmetric Properties

Symmetric properties are bidirectional (direction is irrelevant)

:connectedTo relationship will hold in both directions

:connectedTo :Paul_McCartney

’_//

A symmetric property is its own inverse

:connectedTo a owl:0bjectProperty , owl:SymmetricProperty . # Definition
:Adele :connectedTo :Paul McCartney . # Assertion

:Paul McCartney :connectedTo :Adele . # Inference

select ?pl ?p2 where { ?pl :connectedTo | “:connectedTo ?p2 } # SPARQL, alt. path

m‘,ﬁ: STARDOG

Functional Properties / Unique Values

Functional properties reference a value unique per resource, e.g., publication date

There is at most one outgoing property occurrence (referred triple object)

For validation of functional values consider SHACL sh:maxCount constraint

An album should have only one date
:date rdf:type owl:DatatypeProperty ,

owl :FunctionalProperty
:Abbey Road :date "1969-09-26"""xsd:date

Inverse functional properties reference a globally unique value, e.g., ISBN number
There at most one incoming property occurrence (referring triple subject)

Consider a combination of sh:maxCount and sh:inversePath SHACL constraints for validation

A medium (CD, book) is uniquely identified by an International Standard Book Number

:isbnl3 rdf:type owl:0ObjectProperty , owl:InverseFunctionalProperty
:Abbey Road :isbnl3 isbn:978-1608199990

m‘,ﬁ: STARDOG

Inverse Functional Property / Validation (1)

OWL / RDF OWL Consistency check: Values of :isbn13
property are stated to uniquely identify

a resource (owl:InverseFunctionalProperty).
General schema axioms

:isbnl3 rdf:type

ol Oy SEERESPEEEY | Resources with the same :isbni3 value

owl:InverseFunctionalProperty . could be inferred to be equivalent. Due
to non-unigue naming assumption we'll
Asserted instance data need to explicitly differentiate them via

:Abbey Road :isbnl3
:0ther Album :isbnl3

owl:differentFrom axiom.

Non-unique Naming Assumption Using the DL (Description Logic) reasoning

mode Stardog will detect an inconsistency:

In RDF/OWL different IRIs do not necessarily refer to

distinct resources since no coordination of (unique) $stardog reasoning explain --inconsistency music
resource naming on global scale is assumed.

i We’ll need to explicitly differentiate individuals INFERRED

e e e e A el /SSERTED :Other Album :isbnl3 isbn:978-1688199990

ASSERTED :Abbey Road :isbnl3 isbn:978-1608199990
ASSERTED :Abbey Road owl:differentFrom :0ther_Album
ASSERTED :isbnl3 a owl:InverseFunctionalProperty

:Abbey Road owl:differentFrom :Other Album

m‘,ﬁ: STARDOG

https://www.w3.org/TR/owl2-primer/#Equality_and_Inequality_of_Individuals

Inverse Functional Property / Validation (2)

SPARQL # ISBN is expected to be globally unique,
report any ISBN reused for distinct albums

select ?isbn (count(distinct ?album) as ?count)
?album :isbnl3 ?isbn
}group by ?isbn having (?count > 1)

Looking at identifier resources (validation target)
require at most at most one (inverse) link to an album

: ISBNShape
a sh:NodeShape ;
sh:targetObjectsOf :isbnl3 ;
sh:property [
sh:path [sh:inversePath :isbnl3] ;
sh:maxCount 1 ;

m‘,ﬁs STARDOG

Unique Values / Keys

(Complex) instance key
Set of predicates which values jointly constitute a unique identifier of a class instance

Defined as a list of predicates (data and object properties) on a class expression

A piece of media should be uniquely identified by an ISBN
:MusicCD rdfs:subClassOf :Medium . :Medium owl:hasKey :isbnl3

m‘,ﬁ: STARDOG

OWL Property Axioms / Alternatives

Number of RDFS/OWL axioms initially designed for validation (consistency checking)

Validation axioms: - Axioms recommended for reasoning:
rdfs:domain - rdfs:subClassOf
rdfs:range - rdfs:subPropertyOf
owl:FunctionalProperty - owl:inverseOf
owl:InverseFunctionalProperty - owl:propertyChainAxiom
owl:IrreflexiveProperty - owl:TransitiveProperty
owl:ReflexiveProperty - owl:SymmetricProperty

Alternative: SHACL - Alternative: SPARQL Property Paths

See OWL - SHACL Comparision

~<%Z STARDOG

https://www.w3.org/TR/sparql11-query/#propertypaths
https://www.w3.org/TR/shacl/
https://spinrdf.org/shacl-and-owl.html

Axioms on Individuals / owl:sameAs

Declare different resources (IRIs) to represent the same entity
Nodes will be merged at logical level

owl :sameAs predicate is:

R1ngo Starr

symmetric
dbr:Ringo_Starr

dbr:Richard Starkey

transitive

:Ringo Starr owl:sameAs dbr:Ringo Starr, dbr:Richard Starkey .

:~J%% sTARDOG

owl:sameAs / Canonical IRI

One canonical individual selected from each owl :sameAs equivalence set (aliases)
Chosen randomly, but fixed until the set has changed (updates to data or schema)
Only the canonical individual (one hit) returned by queries regardless of the set size

Queries may use any (asserted or inferred) alias, not only the canonical one

select * where { dbr:Richard Starkey ?p 20 } # :Ringo Starr is the canonical IRI

Query for aliases via owl : sameAs predicate

select ?otherAliases { dbr:Richard Starkey owl:sameAs ?otherAliases }

m‘,ﬁ: STARDOG

owl:sameAs / Implementation

owl :sameAs inferences are computed and indexed eagerly (materialized)

owl :sameAs index is updated automatically when the database changed
configuration option reasoning.sameas defining the reasoning type:
OFF - no inferences, only asserted owl:sameAs triples will be included in query results
ON - extends asserted owl:sameAs predicate by its reflexivity, symmmetry and transitivity

FULL - extends the above by functional, inverse functional properties, and hasKey axioms

~<%Z STARDOG

owl:sameAs / Example

sameAs reasoning types

sameAs via transitivity/symmetry, type ON

:Ringo Starr owl:sameAs dbr:Ringo Starr, dbr:Richard Starkey
:isbnl3 a owl:DatatypeProperty , owl:InverseFunctionalProperty ;

same by inverse functional property, type FULL
:Abbey Road :isbnl3
:my album :isbnl3

:producer a owl:0bjectProperty , owl:FunctionalProperty ;
:Album owl:hasKey ()

same via key, type FULL

:Abbey Road :date " """xsd:date ; :producer
:my other album :date " """xsd:date ; :producer

m‘,ﬁ: STARDOG

Rule-based Reasoning

Reasoning based on user-defined rules to augment OWL axioms

IF/THEN constructs with condition and consequence expressed in terms of graph patterns

Stardog Rule Syntax
Abstract syntax

IF { condition } THEN ({ }

Classifies a band based on the :genre value

IF {
?band a :Band .
?album a :Album ;
:artist ?band ;
:genre genre:Rock

m‘,ﬁ: STARDOG

Rules-based Reasoning / Benefits (1)

Rules may build upon each other (without cycles) introducing layers of abstraction
Rules may maintain a stable data contract thanks to the inferred data structure

Updates to instance data will not break query graph patterns based on rules

Layers of Abstraction

~<%Z STARDOG

Rules-based Reasoning / Benefits (2)

Rules hide complexity of the data and implementation details
Classify resources based on their attributes
Compute values of inferred properties

Stardog Rule Inference if{
?album a :Album ; :track ?track
?track :length ?length
filter(?length > 3600) # longer than 1 hour
bind (round((?length / 3600)) as ?lengthInHours)

}

then {
Classify the individual
?track a g
Infer computed value
:lengthInHours ?lengthInHours

m‘,ﬁ: STARDOG

Schema Management

Reasoning depends on schema information and rules present in the database
These are just RDF triples, loaded like any graph data (e.g., data add command)
“Schema graphs” identified by the database property reasoning.schema.graphs
Comma-separated list of named graph IRIs, including the special named graphs
Used for reasoning with default schema

Reasoning with multiple, custom schemas (schema multi-tenancy)

“Schema”: named, custom set of named graphs (selected at query time)

Rationale
Compatibility: various versions of a schema used by (legacy or recent) applications
Evolution: different rules and business logic, e.g. threshold value computation by rules

Scalability and modularization: partitioning of a large number of axioms and rules

~<%Z STARDOG

https://docs.stardog.com/inference-engine/#reasoning-with-multiple-schemas

Schema Management (2)

Schemas defined via the configuration option reasoning.schemas
Comma-separated collection of <schema name>=<named graph IRI> pairs
Graphs for the default schema configured via reasoning.schema.graphs

Schema management via CLI:

stardog reasoning schema --add musicSchema --graphs :charts :albums -- musicDb
stardog reasoning schema --remove musicSchema -- musicDb
stardog reasoning schema --list musicDb

m‘,ﬁ: STARDOG

Stardog Reasoning / Commands

Reasoning is disabled by default, use -r (reasoning=true) or --schema paremeters to activate
CLI

—-reasoning has the same effect as —--schema default
S stardog query execute --reasoning music "SELECT ?s { ?s a :RockAlbum } LIMIT 10"

S stardog query execute --schema musicSchema music "SELECT ?s

HTTP API
curl -u admin:admin "http://localhost:5820/myDB/query?reasoning=true&query="...

curl -u admin:admin "http://localhost:5820/myDB/query/reasoning?query=..."

m‘,ﬁ: STARDOG

Debug Reasoning

Stardog exposes explanations of an inference

Minimum set of statements (asserted and inferred) to logically justify the inference
Proof tree

Explanation of an inference or an inconsistency as a hierarchical structure

Multiple assertion nodes are grouped under an inferred node

Merges related explanations into a single proof tree (merged proof tree)

Alternatives for an explanation are shown with a number id

For example 1.1 and 1.2 are both alternative explanations for inference 1

$ stardog reasoning explain music ":Abbey Road a :RockAlbum"
INFERRED :Abbey Road a :RockAlbum
ASSERTED (:genre value genre:Rock) rdfs:subClassOf :RockAlbum
ASSERTED :Abbey Road :genre genre:Rock

m‘,ﬁ: STARDOG

https://docs.stardog.com/inference-engine/#explaining-reasoning-results

Reasoning in Stardog / Query Rewriting

Reasoning in Stardog is performed at query time via query rewriting:

Client queries are augmented with respect to selected reasoning schema and profile
Reasoning schema: named set of (domain-specific) model statements (axioms)
Reasoning profile: selection of modeling constructs and related inference rules

Expanded query is executed against the dataset in a standard manner

Scales well even for large datasets (pay for reasoning that you actually use)

In contrast: Inference materialization expands the dataset with respect to a schema/profile

Management issues. materialization on each schema update or reasoning profile
Resource issues: materialization may be computationally expensive (CPU time)
Scaling issues: significant increase of data size, I/O penalty applies to every query

Exception to query rewriting: owl : sameAs reasoning is eagerly materialized

~<%Z STARDOG

https://docs.stardog.com/inference-engine/#why-query-rewriting

Custom Inference Materialization

Ingest inference results into database (a dedicated named graph) to improve query times

Materialization will decouple the production of inferences from querying (no reasoning)

Store inferences

stardog query execute --reasoning store inferences.rqg
DROP SILENT GRAPH <urn:inferences>
INSERT {

GRAPH <urn:inferences> {

.
14

store asserted and inferred results

}
}
WHERE {

}

m‘,ﬁ: STARDOG

Resources

OWL 2 Primer
OWL 2 Quick Reference Guide
OWL 2 Reference card (PDEF)

Video training on reasoning (by Stardog CTO Evren Sirin)

Stardog reasoning documentation

Stardog blog posts on reasoning

~<%Z STARDOG

https://www.w3.org/TR/owl2-primer/
https://www.w3.org/TR/owl2-quick-reference/
https://www.w3.org/2007/OWL/refcardA4
https://www.stardog.com/trainings/reasoning-with-rdf-graphs-and-ontologies/
https://docs.stardog.com/inference-engine/
https://www.stardog.com/search/?query=reasoning

Learning
Objectives

Become familiar with modeling standards

Learn about the means to unveil implicit information

e

Understand the benefits of logical reasoning

m‘,ﬁ: STARDOG

Thank you

