
Paraskevi Zerva
Solutions Architect

Taught by:

Modeling
Building a data model for your Enterprise Knowledge Graph

Learning
Objectives

How to build a data model, using Stardog Studio, to support
your Enterprise Knowledge Graph

Fundamentals of data models and data modeling as a
process

Basics of existing types of models including ontology models

The process of successful ontology model development and
associated best practices

Foundational concepts of ontology models, illustrated
through examples, including an overview of existing
modeling standards and language representations

Modeling

Role of (Data) Modeling / Data Models

• Data modeling is the process used to define & analyze data requirements within the

scope of information systems

• Modeling is also used as a technique for detailing business requirements for specific

databases (database modeling)

• A data model organizes elements of data and standardizes how they relate to one

another and to the properties of real-world entities

• It explicitly determines the structure of data, provides specific definition

• It provides a way to formally represent data structures or a set of concepts such as

entities, attributes and relations

Types of Models & Ontology Models

• Three perspectives of data model instances exist at different phases of the modeling

process:

• Conceptual: describes the “what” of a domain by scoping down key concepts & rules

• Logical: describes “how” key concepts and entities should be modeled & provides a

technical map/model of rules and data structures

• Physical: describes the physical means & structure by which data are stored

• Different types of models exist:

• In relational world database model (schema) forms a blueprint on how a db is constructed

• In a semantic/ knowledge graph world an ontology (model) defines the set of concepts and

relationships that represent the content and structure of a domain, while also provides a

strong focus on formal semantics

Ontology Core Concepts

• An ontology defines a set of representational primitives with which to model a knowledge including:

• classes (or sets/entities),

• attributes (relations between a class member and text data e.g., date, string, boolean)

• relationships (relations among class members)

• information about their meaning (axioms and rules) and,

• constraints (modeling tool mainly used for validation)

• In the context of knowledge graphs (KGs) an ontology model forms a flexible schema designed to

highlight relationships between concepts (graph data structure)

• Ontologies are specified in languages that allow abstraction away from data structures closer in

expressive power to first-order logic therefore operating at "semantic level”

• Stardog is based on the RDF open standard created to represent large-scale information systems.

RDF - Instance data

RDFS - Class/property hierarchy

OWL - Expressive definitions

SWRL - Rules with functions

SHACL - SHACL Shapes Constraint Language

W3C Ontology Language Standards

https://www.w3.org/TR/rdf11-primer/
https://www.w3.org/TR/rdf-schema/
https://www.w3.org/TR/owl2-primer/
https://www.w3.org/Submission/SWRL/
https://www.w3.org/TR/shacl/

Model Development
Process Steps

How to Start the Development of a Model

• No single right way to model a domain

• Capture data requirements (dq) that emerge from business

questions (bq) that need to be answered

• Build your model iteratively by identifying as part of the dq(s) the

entities, attributes and relationships critical to your bq(s)

• Follow simple ontology development guidelines

• Adopt usual (software) engineering practices

• Business Question: Identify percentage of sales of most popular

musical albums and music genres & categorize by date.

• Data Requirements:

Entities: Album, Music Genre

Attributes: date, sales_percentage

Relationships : has_music_genre

Example

I. Determine the scope of the ontology (data requirements)

II. Identify the core classes (critical entities)

III. Build the class hierarchy

IV. Specify properties (relationships and attributes or else object and

data type properties per W3C standard terminology)

Ontology Development Steps

• As minimal ontological commitment as possible (MVP)

• Over-specification hinders extensibility

• Generate competency questions

• Ontology must be able to answer these questions

• Determine if ontology contains enough information by defining

the required entities and property relationships

Ontology Scope (I)

• Specify core classes (representing entities), properties & individuals

• Helps setting the scope and structure

• Reuse terms (if possible)

• Make sure what is the value you are getting from vocabulary

reuse

• Keep it lightweight (make sure it does not affect performance)

• Determine types of terms

Core Classes (II)

• RDFS - rdfs:label, rdfs:comment

• FOAF - foaf:Person, foaf:Organization, … (describing people)

• Dublin Core - dc:title, dc:author, dc:date, ..(metadata about digital docs)

• Standard vocabularies/ontologies

• SKOS (taxonomies), schema.org, GoodRelations, FIBO (financial

services domain)

• Be aware of existing ontology standards and reuse these consciously

based on what you are trying to achieve within your data model domain

Reuse Terms & Standard Vocabularies

Class vs. Relationship (Object Property)

a. Class Person to denote any person
b. Relationship (Object Property) memberOf to denote that Person

has a “memberOf” relationship to a music band

Class vs. Individual (or Instance)

a. Jazz_Music as a subclass of Music_Genre (class hierarchy)
b. Jazz_Music as an instance of Music_Genre (type of thing)

Types of Terms

• Backbone of the ontology

• Important for understandability and reasoning (inheritance)

• Subsumption relation is the inheritance of properties from the parent

(subsuming) class to the child (subsumed) class

• Anything true of a parent class is also true of all its child classes

• 2 options : a class is allowed to have only one parent (single inheritance), have a

number of parents (multiple inheritance)

• Be principled but balance it with pragmatics (follow common-sense rules)

• Avoid deep philosophical debates - be practical

Class Hierarchy (III)

Class Hierarchy Example

:SoloArtist

:Artist

:Band

rdfs:subClassOf rdfs:subClassOf

rdfs:Class

rdf:type

• SoloArtist is a :subclassOf of Artist

class

• Band is a :subclassOf of Artist

class

• Add classes as needed
• Subclasses should have different characteristics than the super

class
• Intermediate classes

• Single subclass: incompleteness or redundancy
• Too many subclasses: not having enough categories

• Consistent modeling
• Homogenous siblings (subclasses) in the hierarchy
• Part-whole relations vs. subclasses (composition vs inheritance)

Class Hierarchy Guidelines

• Which class should/can/must be used by which property

• Object (relationships) & data type properties (attributes).

• Domain and range of properties

• Global definitions (rdfs:domain, rdfs:range) - apply to all instances of

the property

• Local definitions (owl:someValuesFrom, owl:allValuesFrom) -

constrain the range of a property in specific contexts by local

restrictions to its class

• SHACL constraints for close-world database schema & data validation

Specify Properties (IV)

• Classes refer to sets, collections, concepts, types of objects, kinds of things

• Properties refer to all types of object relationships or datatype properties (attributes)

• Relationships refer to object properties (based on OWL/RDF standard terminology)

• Attributes refer to datatype properties (based on OWL/RDF standard terminology)

• Individuals may also be called instances or objects (the basic or "ground level" objects)

• In terms of graph representation diagrams, Classes & Individuals correspond to nodes

while properties correspond to edges

• Classes & Individuals could be used in the position of subject or object in the RDF tuple

notation, while properties correspond to predicates

Glossary

:Album :Song

relationship or object
property

xsd:dateTime

 :track

 :date

Class Class

attribute or datatype
property

:Let_It_Be instance or individual

Diagram Representation

Ontology Concepts
through Example

• Start with 3-5 key concepts & their relationships

• A little modeling goes a long way

• Over-specification hinders reuse

• Layer your models

• Start simple

• Extend and refine definitions as you go

• Naming should reflect the real world

• Model will be your lingua franca for data

• Should match what domain experts say/think

Basic Modeling

RDF schema

Key Concepts for Music Data Example

:Album a rdfs:Class .

:track a rdf:Property .

:date a rdf:Property .

:Album a owl:Class .

:track a owl:ObjectProperty .

:date a owl:DatatypeProperty .

RDFS OWL

Declarations

• Represents a set of individuals

(instances) or entities with

common characteristics

• Can be organized in a hierarchy

using rdfs:subClassOf

• Instances can be classified

automatically under the hierarchy

based on their properties

Class (rdfs:Class)

:SoloArtist

:Artist

:Band

rdfs:subClassOf rdfs:subClassOf

rdfs:Class

rdf:type

Class (owl:Class or owl:Thing)

:SoloArtist

:Artist

:Band

rdfs:subClassOf rdfs:subClassOf

owl:Class

rdf:type

Alternatively the main class could be

defined as of:

rdf:type owl:Class or

rdf:type owl:Thing

in the OWL language notation

:SoloArtist

:Artist

:Band

rdfs:subClassOf rdfs:subClassOf

rdfs:Class

rdf:type

:John_Lennon :The_Beatles

rdf:type rdf:type

Individual vs. Class

• Class represents a set individuals

with common characteristics

• John_Lennon is an instance of

the Solo Artist class

• The_Beatles is an instance of the

Band class

It can take time to build
the skill to know what to
make a class and what to
make an instance.

Property (1/2)

:Band

:member

:SoloArtist

rdfs:domain rdfs:range

rdf:Property

rdf:type

:Album

:date

xsd:dateTime

rdfs:domain rdfs:range

rdf:Property

rdf:type

• Represents relationships

• Object property defines

relationships between individuals.

Individual ➔ Individual

• Data property defines

relationships between an

individual and a literal.

Individual ➔ literal (e.g., string,

boolean)

:singleTrack

:track

:albumTrack

rdfs:subPropertyOf rdfs:subPropertyOf

rdf:Property

rdf:type

Property (2/2)

• Can be organized in a hierarchy as

well through rdfs:subPropertyOf

Correlate Relational and Ontology Models

• A lot of the data come from the relational world but how do the two worlds correlate?

• A table generally represents a class and a row in a table is an instance of a class.

• The properties correspond to column names and cell values are the nodes, literals and

individuals, that the node is connected to.

• If you want to know more on how to turn relational data to a (knowledge) graph and

represent with an ontology model check the training on Virtual graphs.

• For classes, the local name starts with a capital letter

:Album

• For properties (object or datatype), the local name starts with
lower-case letter

:track

Naming Conventions

• rdf:type (to state that a data resource is an instance of a class)

• rdfs:Class or owl:Class (both are supported by Stardog ; consistency is

recommended)

• rdfs:Property, owl:ObjectProperty, owl:DatatypeProperty (to state

properties)

• rdfs:subClassOf, rdfs:subPropertyOf (to state class and property

hierarchies)

Ontology Concepts Notation

Practical
Considerations

• Naming scheme

• Ontology modularity

• Ontology Layering

• Ontology versioning

• Testing and debugging

Practical Considerations

Naming Scheme

• Any scheme works as long as it is consistent

• Capitalization and delimiters

member, hasMember, has_member

• Suffix or prefix conventions

 isMemberOf, memberOf, hasMember

• Singular vs plural

• Use annotations instead of overloading names

• Annotations improve clarity, avoid misuse

• Single monolithic ontology is hard to maintain

• Divide domain into submodules

• Use separate ontologies [and namespaces]

• Reuse and share terms between ontologies

Modularity

Upper Ontology
(General Knowledge)

Middle Ontology
(Shared Domain Knowledge)

Lower Ontology
(Specific Domain Knowledge)

Ontology Layering

• Ontologies should be considered as software artifacts

• Use a version control system

• Ontologies should be semantically versioned

• Version ID should be structured and meaningful

• Can be changed according to well-understood rules

• SemVer http://semver.org/

Ontology Versioning

http://semver.org/

• Version ID is in the form X.Y.Z

• X, Y, Z fields are integers

• X is major, Y is minor, Z is patch

• Additional labels can be appended to the version ID as needed

SemVer Basics

Given version X.Y.Z, increment the:

• Major version X when you make incompatible changes,

• Minor version Y when you add functionality in a

backwards-compatible manner, and

• Patch version Z when you make backwards-compatible bug fixes

SemVer Principle

• Each ontology has an ontology IRI

• Optionally an ontology might have a version IRI

• Ontology IRI should be unique if there is no version IRI

• Ontology IRI and version IRI pair should be unique

Versioning in OWL

<http://www.example.com/ont> owl:versionIRI <http://www.example.com/ont/2.0>

• Check for logical errors

• Unsatisfiable classes

• Inconsistent instances

• Inspect inferences

• Detect unintentional inferences

• Develop unit tests (treat ontology models as programs)

• SPARQL queries / expected results (expected schema behavior)

• SHACL (shapes definition to make tests declarative)

Testing Ontologies

Ontology Model
Development Tools

• Stardog Studio Models Editor (primary modeling tool)

• Protégé: A free open-source ontology editor and framework (Stardog

reads protege models)

• Next we are going to use Stardog Studio Models Editor to walk you

through the fundamentals of building a music ontology model using

the Music Data Example

Ontology Development Tools/Editors

https://protege.stanford.edu/
https://github.com/stardog-union/learning-stardog/blob/main/music-data-ontology.ttl
https://github.com/stardog-union/learning-stardog/blob/main/GettingStarted_Music_Data.ttl

RDF schema

Key Concepts for Music Data Example

Stardog Studio
Models Demo

Looking on the data we realize that the critical entities to model are:

Classes: Person, Artist, SoloArtist, Band, Album, Song, Songwriter

Properties: Member of Band , track & date of Album, length and

writer of Song

Step 0: Identify Data Requirements & Key
Concepts to Model

Step 1: Create a music database in Studio

Step 2: Create a model through Models
Editor in Studio

Step 2: Create a Model through Models
Editor in Studio

Step 3: Add Key Classes

Step 3: Add Key Classes

Step 3: Add Key Classes

Step 3: Add Key Classes

Step 4: Add Relationships (Object Properties)

Step 4: Add Relationships (Object Properties)

Step 5: Add Attributes (Datatype Properties)

Step 5: Add Attributes (Datatype Properties)

• Models editor also allows you add SHACL constraints through the

constraints tab

• Though will cover in detail the SHACL constraints tutorial as part of

separate training session

Step 6: Add Constraints

Step 6: Add Constraints Tab

Graph Visualization Overview

Learning Objectives

Learning
Objectives

How to build a data model, using Stardog Studio, to support
your Enterprise Knowledge Graph

Fundamentals of data models and data modeling as a
process

Basics of existing types of models including ontology models

The process of successful ontology model development and
associated best practices

Foundational concepts of ontology models, illustrated
through examples, including an overview of existing
modeling standards and language representations

Thank you

