
Joseph Hayes
Senior Software Engineer

Taught by:

High Availability
Stardog clustering for High Availability

Learning
Objectives

Become familiar with Stardog cluster usage

Understand node purposes

Build cluster with ZooKeeper and a load balancer

Set up a cache node to cache a VG

Stardog Cluster

Stardog Cluster

• Multiple Stardog servers behaving like one

• Indistinguishable from a single Stardog instance for the client

• Provides High Availability (HA)

• Data replication across all nodes in the cluster

Architecture

Components

Clients

Load Balancer

Stardog HA Cluster

ZooKeeper Cluster

Stardog
Node 2

Stardog
Node n

Stardog
Node 1

ZK Node
1

ZK Node
2

ZK
Node n...

...

Components

ZooKeeper

Nodes

Load Balancer

• At least 3 ZooKeeper (ZK) nodes working

together as an ensemble

• Provides centralized configuration

information and distributed

synchronization

• Manages cluster locks and keeps track of

transaction IDs and node participation

Components

ZooKeeper

Nodes

Load Balancer

Standard nodes

• Coordinator - orchestrates transactions

and maintains consistency by expelling

any nodes that fail an operation

• Participants

Components

ZooKeeper

Nodes

Load Balancer

Cache nodes
• Reduce Load on Upstream Database Servers

• Read Scale-out for Data Source Access

• Partial Materialization of Slowly Changing Data

Cache Cluster Proper

Internal
SD Cluster

NodeCached

Answers

MongoDB MySQL Aurora

Uncached Answers

User Request

Results

Components

ZooKeeper

Nodes

Load Balancer

Standby nodes

• Safely run database and server backups

without taking CPU cycles from servicing

user requests

• Closely synced to cluster

• Can upgrade to a full node in the event

that a cluster node needs to be replaced

or the cluster expanded

Components

ZooKeeper

Nodes

Load Balancer

• Any Load Balancer (LB) can be used

• Liveness checks

• Node is working (joining cluster, etc.)

• Health checks

• Node is full participating member and

ready for traffic

• (Optional) provide route for coordinator

• Transactions get passed to the

coordinator directly where appropriate

Cluster Details

• A cluster guarantees that all nodes are consistent

• Nodes with failed operations are expelled from the cluster

• An expelled node must synchronize with the cluster before it can

rejoin

• The Coordinator node is responsible for maintaining consistency

• Any node can handle a client request

• If a request needs to go through the coordinator (e.g., admin

operations) it is forwarded to the current coordinator

Cluster
Details

Coordination

Locks

Joining

Synchronization

Transactions

• One node serves as the Coordinator

• Orchestrates transactions

• Maintains consistency

• If it fails, a new Coordinator is elected

• Other nodes serve as Participants

Cluster
Details

Coordination

Locks

Joining

Synchronization

Transactions

• Admin

• Acquired before every admin operation

• Transaction (Read)

• Read lock acquired before every

transaction

• Cluster Join

• Transaction write lock and an Admin

lock

Cluster
Details

Coordination

Locks

Joining

Synchronization

Transactions

Cluster
Details

Coordination

Locks

Joining

Synchronization

Transactions

• If there are constant writes a joining node must either

• Wait until the updates subside

• Obtain a lock that temporarily blocks the writes

until the node is synchronized and can join

• Nodes trying to join a cluster will attempt to sync their

data before they obtain a lock

• If writes occur too often the joining node may never

catch up

• If a node fails to join after several attempts, it will

forcibly obtain the lock and sync.

• This blocks writes until the operation is

complete

Cluster
Details

Coordination

Locks

Joining

Synchronization

Transactions

Action Example Triggers

DROP Triggers if local DB on a node does not
exist in ZK

SYNC_FULL Triggers if DB seen in ZK does not exist
locally (sends backup of complete DB)

SYNC Triggers if local transaction does not
match ZK transaction (sends transaction
log contents after specified transaction)

NOOP No operation is performed if the previous
criteria does not trigger

Note: This is not a comprehensive list as actions can be performed
in several different situations

Cluster
Details

Coordination

Locks

Joining

Synchronization

Transactions

Action Description

Begin* • Acquire transaction read lock
• Begin replication

Data Add/Remove • Replicate to all nodes
• Record failures

Prepare • Expel any node that fails replication
• Update RDF index and check ICV
• Send prepare request to every node*

Commit* • Send commit request to every node
• Update transaction information in ZK

*Only on Coordinator

Implementation

Sizing, Performance, & Best Practices

• ZK fault tolerance works best with an odd numbered ensemble of

at least 3 (i.e. 3, 5, 7...etc.)

• Larger Stardog clusters

• More performant with Reads

• Less performant with Writes

• Tuning: https://www.stardog.com/blog/tuning-cluster-for-cloud/

https://www.stardog.com/blog/tuning-cluster-for-cloud/

Sizing, Performance, & Best Practices

Deployment Optimization Example:

• Load once, read many

• Each Stardog node in the cluster can mount a volume created

from the snapshot, bulk load the data at startup, and since any

node can independently respond to a read request the load

balancer can distribute requests round-robin

• Joining nodes aren’t blocked by read requests

Sizing, Performance, & Best Practices

Deployment Optimization Example:
• Frequent writes, followed by periods of quiescence

• Data is written to Stardog throughout the day in frequent transactions

but not at night

• If it’s important to your use case that a joining node not block writes

• Configure Stardog to never forcibly obtain the join lock

• If you deploy a three-node cluster but it’s too risky to operate your

production cluster with only two nodes for HA, then it may make sense to

deploy a larger cluster so you can afford to lose more nodes during

write-heavy times and wait for nodes to rejoin once writes subside

Sizing, Performance, & Best Practices

Deployment Optimization Example:
• Continuous small writes

• Cluster rarely experiences quiet time with respect to writes and you want nodes

to rejoin as quickly as possible

• Can configure a joining node to obtain the lock on the second attempt

• In this case the joining node will block the writes; but, since the node will sync

without the lock on the first attempt, it will be able to mostly catch up to the

other nodes in the cluster

• On the second attempt it will forcibly obtain the lock and sync any transactions

it missed in that short window and join, only blocking writes for a short time

Demo

Demo Setup

Pre-requisites:

• Docker Desktop (with hardware virtualization turned on)

• Existing DB to create a Virtual Graph (VG)

What we will create:

• ZK quorum

• Stardog cluster

• LB for the cluster

• VG of a DB

• Cache of the VG

Demo Build

ZK Setup

Stardog Setup

LB Setup

VG Creation

Cache Creation

• There will be 3 ZK containers

• Using the default Docker Hub image of ZK* and add in ENV

variables

• ZOO_MY_ID

• The server’s ID

• ZOO_SERVERS

• A list of all the servers

• ZK documentation

• https://zookeeper.apache.org/doc/current/zookeeperStar

ted.html

* https://hub.docker.com/_ /zookeeper
Note: Currently (Feb 2021) ZK 3.4 is supported and ZK 3.5 is in preview
mode

https://zookeeper.apache.org/doc/current/zookeeperStarted.html
https://zookeeper.apache.org/doc/current/zookeeperStarted.html
https://hub.docker.com/_/zookeeper

Demo Build

ZK Setup

Stardog Setup

LB Setup

VG Creation

Cache Creation

version: '3.8'

services:

 zoo1:

 image: zookeeper:${ZK_VERSION_TAG}

 hostname: zoo1

 container_name: zkn1

 environment:

 ZOO_MY_ID: 1

 ZOO_SERVERS: server.1=0.0.0.0:2888:3888;2181

server.2=zoo2:2888:3888;2181 server.3=zoo3:2888:3888;2181

 ports:

 - "${HOST_MAP_ZKN1}:8080" # http:/localhost:8080/commands

 networks:

 - backend

 zoo2:

 ...

Docker Compose Example:

Demo Build

ZK Setup

Stardog Setup

LB Setup

VG Creation

Cache Creation

• There will be 3 Stardog containers

• Using the default Docker Hub image of

Stardog* (you can use a custom image

instead)

• A license and properties file must be

passed in on build

* https://hub.docker.com/r/stardog/stardog

https://hub.docker.com/r/stardog/stardog

Demo Build

ZK Setup

Stardog Setup

LB Setup

VG Creation

Cache Creation

version: '3.8'

services:

 stardog1:

 container_name: sdn1

 hostname: stardog1

 depends_on:

 - zoo1

 - zoo2

 - zoo3

 environment:

 PATH: $PATH:/opt/stardog/bin

 STARDOG_EXT: /var/opt/stardog/ext

 build:

 context: ./stardog

 args:

 - TAG=${STARDOG_VERSION_TAG}

 - LICENSE=${STARDOG_LIC}

 - NODE_TYPE=node

 ports:

 - "${HOST_MAP_SDN1}:5820"

 networks:

 - backend

 stardog2:

 ...

Docker Compose Example:

Demo Build

ZK Setup

Stardog Setup

LB Setup

VG Creation

Cache Creation

ARG TAG

FROM stardog:$TAG

ARG LICENSE

ARG NODE_TYPE

COPY license/$LICENSE /var/opt/stardog/stardog-license-key.bin

COPY stardog.$NODE_TYPE.properties /var/opt/stardog/stardog.properties

COPY log4j2.xml /var/opt/stardog/log4j2.xml

RUN mkdir -p /var/opt/drivers/

COPY ./postgresql-42.2.5.jar /var/opt/drivers/

RUN mkdir /var/opt/stardog/ext

COPY ext /var/opt/stardog/ext

Dockerfile Example:

Demo Build

ZK Setup

Stardog Setup

LB Setup

VG Creation

Cache Creation

Flag to enable the cluster, without this flag set, the rest of the

properties have no effect

pack.enabled=true

this node's IP address (or hostname) where other Stardog nodes are going

to connect

this value is optional but if provided it should be unique for each

Stardog node

#pack.node.address=196.69.68.4

the connection string for ZooKeeper where cluster state is stored

pack.zookeeper.address=zoo1:2181,zoo2:2181,zoo3:2181

would need to change for production

pack.zookeeper.auth=admin:admin

Stardog Properties Example:

Demo Build

ZK Setup

Stardog Setup

LB Setup

VG Creation

Cache Creation

• There will be a LB container

• Using the default Docker Hub image of

HAProxy* (you can use a custom

container instead)

• A configuration file must be passed in on

build

* https://hub.docker.com/_ /haproxy

https://hub.docker.com/_/haproxy

Demo Build

ZK Setup

Stardog Setup

LB Setup

VG Creation

Cache Creation

version: '3.8'

services:

 stardog:

 image: haproxy:${HAPROXY_VERSION_TAG}

 container_name: sdlb

 depends_on:

 - stardog1

 - stardog2

 - stardog3

 build:

 context: ./haproxy

 ports:

 - "${HOST_MAP_SDLB}:5820"

 networks:

 - frontend # This will service requests for the Stardog cluster

 - backend

 ...

Docker Compose Example:

Demo Build

ZK Setup

Stardog Setup

LB Setup

VG Creation

Cache Creation

FROM haproxy:2.3

COPY haproxy.cfg /usr/local/etc/haproxy/

Dockerfile Example:

Note: You could also simply pass in the file via a volume mount
instead of using a Dockerfile

Demo Build

ZK Setup

Stardog Setup

LB Setup

VG Creation

Cache Creation
...

backend all_stardogs

 ...

 balance source # Maintain client connections

 …

 # Backend and All Stardog server sections

 server stardog1 stardog1:5820 maxconn 64 check

 server stardog2 stardog2:5820 maxconn 64 check

 server stardog3 stardog3:5820 maxconn 64 check

HAProxy Configuration Example:
• https://docs.stardog.com/cluster/installation-and-

setup/#3-start-haproxy-or-equivalent

• This demo build will have the following

differences:

https://docs.stardog.com/cluster/installation-and-setup/#3-start-haproxy-or-equivalent
https://docs.stardog.com/cluster/installation-and-setup/#3-start-haproxy-or-equivalent

Demo Build

ZK Setup

Stardog Setup

LB Setup

VG Creation

Cache Creation

• Create a VG with your DB

• https://www.stardog.com/tutorials/us

ing-virtual-graphs/

Demo Build

ZK Setup

Stardog Setup

LB Setup

VG Creation

Cache Creation

• There will be 1 Stardog container

• This can be same as the Stardog Setup,

but properties file can be blank

* https://hub.docker.com/r/stardog/stardog

https://hub.docker.com/r/stardog/stardog

Demo Build

ZK Setup

Stardog Setup

LB Setup

VG Creation

Cache Creation

version: '3.8'

services:

 cache1:

 container_name: sdc1

 hostname: cache1

 depends_on:

 - stardog

 environment:

 PATH: $PATH:/opt/stardog/bin

 STARDOG_EXT: /var/opt/stardog/ext

 build:

 context: ./stardog

 args:

 - TAG=${STARDOG_VERSION_TAG}

 - LICENSE=${STARDOG_LIC}

 - NODE_TYPE=cache

 ports:

 - "${HOST_MAP_SDC1}:5820"

 networks:

 - backend

 ...

Docker Compose Example:

Demo Build

ZK Setup

Stardog Setup

LB Setup

VG Creation

Cache Creation

Create Cache Target

stardog-admin cache target add mycache cache1:5820 admin admin

Create Cache

stardog-admin cache create cache://mycache --graph virtual://myvg --target

cachea

Cluster Commands:

DEMO

SWITCH TO LIVE DEMO - time stamp 3:28

SWITCH BACK TO MONITORING SLIDE (41) - time stamp 14:25

Monitoring

• Cluster Info

• stardog-admin cluster info

• Cluster Status

• stardog-admin cluster status

• Cluster Metrics

• stardog-admin cluster metrics

DEMO

SWITCH TO LIVE DEMO - time stamp 14:49

SWITCH BACK TO BACKUP AND RESTORE SLIDE (43) - time stamp
17:10 - STAYS ON SLIDE DECK AFTER THIS

Backup & Restore

Steps

1. Shutdown Stardog on all nodes in the cluster
2. Shutdown the ZooKeeper ensemble, if possible. If that’s not

possible we recommend backing up ZooKeeper’s state and
wiping the contents stored by Stardog.

3. Create an empty $STARDOG_HOME directory on all of the
Stardog Cluster nodes.

4. Export $STARDOG_HOME to the empty home and run server
restore (the same as you would for a single node) on a single
node.

5. Start a fresh ZooKeeper ensemble with an empty data directory.
6. Start ONLY the Stardog node where you performed server

restore. Verify the node starts and is in the cluster with the
cluster info command before continuing to step 7.

7. Start a second node in the cluster with its empty home directory,
wait for it to sync and join the cluster, as reported by cluster info.
Wait until the node joins before moving to step 8.

8. Repeat step 7, one node at a time, for the remaining cluster
nodes.

• Backup the cluster
• stardog-admin [server/db] backup

• Will run on each host
• Restore the cluster

• stardog-admin db restore

• Will replicate to each host
• stardog-admin server restore

• It is recommended that a
fresh ZK ensemble
deployment

Upgrading

1. Confirm coordinator

• stardog-admin cluster info

2. Ensure no transactions are running

• stardog-admin db status <db name>

3. Shutdown the cluster

• stardog-admin cluster stop

4. Backup STARDOG_HOME

5. Switch to the new version and bring up the nodes

Learning Objectives

Learning
Objectives

Become familiar with Stardog cluster usage

Understand node purposes

Build cluster with ZooKeeper and a load balancer

Set up a cache node to cache a VG

Thank you

