
Brendan Newlon
Solutions Architect

Taught by:

Getting Started
with RDF & SPARQL
The basics of RDF graphs and the SPARQL query language

Learning
Objectives

Learn the fundamentals of RDF graphs

Understand the core ideas of SPARQL queries

Describe the common types of SPARQL queries

Demonstrate the use of SPARQL to create or update
RDF data

Learn how to work with named graphs

Introduction to RDF

• Resource Description Framework (RDF) provides a standardized universal model for

representing data and its meaning

• Support hybrid, varied, and changing data models with ease

• Easy to represent any change in data or schema

• Interoperable and composable

• Eg. The song with the name “Love Me Do” has two

writers, Paul McCartney and John Lennon

Why RDF?

:Love_Me_Do

“Love Me Do”

 :
na
me

:Paul_McCartney

:writer

:writer
:John_Lennon

:Paul_McCartney

• Let’s say the class (ie. category) “artist” includes both solo artists and

bands, and a member of a band is a solo artist

• The RDF way to describe these relationships is based on how we

would express it in speech:

Eg. The Beatles has as a member Paul McCartney

Key Terms 1: The Basic Idea

:Paul_McCartney:The_Beatles
:member

Subject
Predicate

Object

• By class we mean a type of thing (eg. band or artist)

• A class is made up of a set of individuals (eg. The Beatles or John

Lennon), which can also be called instances or objects

• A class or individual can be the subject or the object in a 3-part RDF

structure called an RDF triple

Key Terms 2: Objects

• The middle part of an RDF triple is the predicate, which is used in two

ways. When it describes a relationship between two objects (classes

or individuals) in our model, then it is called an object property

• If the predicate provides data (a number, date, string, etc.) about an

object, it is called a data property describing an attribute

Key Terms 3: Properties

PredicateSubject Object

PredicateSubject Data

Key Terms 4: Graphs

• Taken together, these

elements make up a

graph

• In a graph, points

representing objects or

data are called nodes

while the predicates

that connect them

(either object properties

or data properties) are

called edges

• There are two kinds of objects: classes and individuals/instances

• Classes are sets, collections, types of objects, kinds of things

• Individuals (or instances) are what a class groups together

• Properties come in two types. An object property is a relationship between

two things. Datatype properties are attributes of one thing

• In graph representation diagrams, classes & individuals are called nodes while

properties are called edges

• In RDF triples, classes and individuals are the subjects or objects, while

properties correspond to predicates. A set of RDF triples is called an RDF

graph

Key Terms: Review

RDF Concepts

• IRI: Nodes and edges with a unique identifier

• Literal: Nodes representing values like numbers and dates

• Blank node: Nodes without an explicit identifier

IRI

• Internationalized Resource Identifier

http://www.w3.org/1999/02/22-rdf-syntax-ns#type

http://stardog.com/tutorial/The_Beatles

mailto:John_Doe@example.com

urn:isbn:9788026874256

tag:stardog.com,2018:product:stardog

Prefixed Name

• An IRI looks like this

• Using a prefix declaration for its namespace

• Can be shortened to a prefixed name

http://www.w3.org/1999/02/22-rdf-syntax-ns#type

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

rdf:type

Literals

• Literals are written in quotes followed by their datatype IRI

• Datatype can be omitted for strings:

• Datatype and quotes can be omitted for some datatypes

integer decimal double boolean

“1963-03-22T21:44:00Z”^^xsd:dateTime“1963-03-22” ^^xsd:date

“The Beatles” “The Beatles”^^xsd:string

 125 3.14 3.2E4 true

RDF Serialization

• Declare prefixes

• Write subject, predicate, object followed by a ‘.’

PREFIX :<http://stardog.com/tutorial/>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

:The_Beatles rdf:type :Band .

:The_Beatles :name “The Beatles” .

Turtle Syntax

PREFIX :<http://stardog.com/tutorial/>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

:Love_Me_Do rdf:type :Song .

:Love_Me_Do :name “Love Me Do" .

:Love_Me_Do :length “125” ^^xsd:integer .

:Love_Me_Do :writer :John_Lennon .

:Love_Me_Do :writer :Paul_McCartney .

Literal Shorthand

PREFIX :<http://stardog.com/tutorial/>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

:Love_Me_Do rdf:type :Song .

:Love_Me_Do :name “Love Me Do" .

:Love_Me_Do :length 125 .

:Love_Me_Do :writer :John_Lennon .

:Love_Me_Do :writer :Paul_McCartney .

Shorthand for rdf:type

PREFIX :<http://stardog.com/tutorial/>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

:Love_Me_Do a :Song .

:Love_Me_Do :name “Love Me Do" .

:Love_Me_Do :length 125 .

:Love_Me_Do :writer :John_Lennon .

:Love_Me_Do :writer :Paul_McCartney .

Same Subject

PREFIX :<http://stardog.com/tutorial/>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

:Love_Me_Do a :Song ;

:name “Love Me Do" ;

:length 125 ;

:writer :John_Lennon ;

:writer :Paul_McCartney .

Same Subject and Predicate

PREFIX :<http://stardog.com/tutorial/>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

:Love_Me_Do a :Song ;

:name “Love Me Do" ;

:length 125 ;

:writer :John_Lennon ,

:Paul_McCartney .

Ignore Whitespace

PREFIX :<http://stardog.com/tutorial/>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

:Love_Me_Do a :Song ;

 :name “Love Me Do" ;

:length 125 ;

:writer :John_Lennon , :Paul_McCartney .

Blank Nodes

B-Node Serialization

 :Please_Please_Me :track _:s2n1 .

 _:s2n1 :side 2 ;

:order 1 ;

:song :Love_Me_Do .

 :Please_Please_Me :track _:s2n1 [

 :side 2 ;

:order 1 ;

:song :Love_Me_Do] .

SPARQL

Triple Patterns

• A triple pattern is a triple with zero or more variables

• Triple patterns match the triples in the graph

• Each matching triple produces one result

 ?band rdf:type :Band .

 :Love_Me_Do :writer ?writer .

 ?album :artist ?artist .

 :The_Beatles ?p ?o .

SELECT Query: The Main Query Form
in SPARQL
• It has two basic components:

1. A list of selected variables

2. Triple patterns to match

• Results are returned as a table

where each selected variable is

a column and each pattern

match is a row

SELECT ?band

WHERE {

 ?band rdf:type :Band .

}

SELECT ?album ?artist

WHERE {

 ?album rdf:type :Album .

 ?album :artist ?artist .

 ?artist rdf:type :SoloArtist .

}

SELECT ?album

WHERE {

 ?album rdf:type :Album .

}

Single Triple Pattern

SELECT *

{

 ?album a :Album

}

SELECT * {

 ?album a :Album .

 ?album :artist ?artist .

}

Joins

SELECT * {

 ?album a :Album .

 ?album :artist ?artist .

 ?artist a :SoloArtist .

}

SELECT ?song ?length {

 ?song a :Song .

 OPTIONAL {

 ?song :length ?length .

 }

}

Optional Join

SELECT (avg(?count) AS ?avgCount)

{

 SELECT ?year (count(?album) AS ?count)

 {

 ?album a :Album ;

 :date ?date .

 BIND (year(?date) AS ?year)

 }

 GROUP BY ?year

}

Subqueries

SELECT ?name

{

 { ?artist a :SoloArtist }

 UNION

 { ?artist a :Band }

 ?artist :name ?name

}

Alternatives

SELECT ?song {

 ?song a :Song .

 FILTER (

NOT EXISTS {

 ?song :length ?length .

 }

)

}

Negation

SELECT *

{

 ?album a :Album ;

 :artist ?artist ;

 :date ?date

}

ORDER BY ?date

Sort Results

SELECT *

{

 ?album a :Album ;

 :artist ?artist ;

 :date ?date

}

ORDER BY ?date

LIMIT 2

Limit Results

SELECT *

{

 ?album a :Album ;

 :artist ?artist ;

 :date ?date

}

ORDER BY ?date

LIMIT 2

OFFSET 2

Offset Results

SELECT *

{

 ?album a :Album ;

 :artist ?artist ;

 :date ?date

 FILTER (year(?date) >= 1970)

}

ORDER BY ?date

Filtering Results

SELECT *

{

 ?album a :Album ;

 :artist ?artist ;

 :date ?date

 BIND (year(?date) AS ?year)

 FILTER (?year >= 1970)

}

ORDER BY ?date

Binding Variables

SELECT DISTINCT ?year

{

 ?album a :Album ;

 :artist ?artist ;

 :date ?date

 BIND (year(?date) AS ?year)

}

ORDER BY ?year

Removing Duplicates

SELECT (min(?date) as ?minDate) (max(?date) as ?maxDate)

{

 ?album a :Album ;

 :date ?date

}

Aggregation

SELECT ?year (count(?album) AS ?count)

{

 ?album a :Album ;

 :date ?date ;

 BIND (year(?date) AS ?year)

}

GROUP BY ?year

ORDER BY desc(?count)

Grouping Results

select distinct ?cowriter

{

 :Paul_McCartney ^:writer/:writer ?cowriter

 FILTER (?cowriter != :Paul_McCartney)

}

order by ?cowriter

Property Paths

select distinct ?cowriter

{

 :Paul_McCartney (^:writer/:writer)+ ?cowriter

 FILTER (?cowriter != :Paul_McCartney)

}

order by ?cowriter

Recursive Paths

Query Types

ASK {

 ?band a :Band .

 ?song :writer ?band .

}

ASK Query

DESCRIBE :The_Beatles

DESCRIBE Query

DESCRIBE ?band

WHERE {

 ?band a :Band ;

 :name ?name

 FILTER(contains(?name, "The"))

}

CONSTRUCT WHERE {

 ?band a :Band ;

 :member ?member

}

CONSTRUCT Query

CONSTRUCT {

 ?member a :BandMember

}

WHERE {

 ?band a :Band ;

 :member ?member

}

Updates

INSERT DATA {

 :Love_Me_Do a :Song ;

 :name "Love Me Do" ;

 :length 125 ;

 :writer :John_Lennon , :Paul_McCartney .

};

DELETE DATA {

 :Love_Me_Do a :Song ;

 :name "Love Me Do" ;

};

INSERT/DELETE Triples

INSERT {

 ?member a :BandMember

}

WHERE {

 ?band a :Band ;

 :member ?member

}

INSERT Query

DELETE {

 ?song :length ?seconds

}

INSERT {

 ?song :length ?duration

}

WHERE {

 ?song a :Song ;

 :length ?seconds

 BIND(?seconds * "PT1S"^^xsd:dayTimeDuration AS ?duration)

}

INSERT/DELETE Query

Graph Management

LOAD <http://...> TO :targetGraph # load triples into graph

CLEAR :targetGraph # remove triples from graph

ADD :sourceGraph TO :targetGraph # add triples from one graph to another

COPY :sourceGraph TO :targetGraph # like ADD but CLEAR target graph first

MOVE :sourceGraph TO :targetGraph # like COPY but CLEAR source graph

 # afterwards

Named Graphs

• An RDF dataset is a collection of RDF graphs:

• There is exactly one default graph

• It does not have a name

• May be empty or contain RDF triples

• Zero or more named graphs

• A named graph is an RDF graph

identified by an IRI

• Graph names are unique within an

RDF dataset

RDF Datasets

Default Graph (no IRI)

Named Graph 1
<...#g1>

Named Graph 2
<...#g2>

Named Graph 3
<...#g3>

Named Graph 4
<...#g4>

RDF Data in TriG: Turtle with Named Graphs

 GRAPH :Artist {

 :The_Beatles a :Band .

 ...

 }

 GRAPH :Album {

 :Please_Please_Me rdf:type :Album .

...

 }

}

• RDF data for the default

graph and zero or more

named graphs can be

serialized in a single

document

• Use GRAPH to specify a

named graph followed by its

triples

Specifying SPARQL Dataset

PREFIX ex: <...>
SELECT *
FROM ex:g1
FROM ex:g4
FROM NAMED ex:g1
FROM NAMED ex:g2
FROM NAMED ex:g3
WHERE {

 ...Pattern A...
 GRAPH ex:g3 {

 ...Pattern B...
}
GRAPH ?graph {
 ...Pattern C...
}

}

• A query can use FROM to override the default

graph and temporarily treat the merge of one

or more graphs as though they are the

default graph

• FROM NAMED determines which graphs can

be available as named graphs in the query

• GRAPH directs a query either to a particular

named graph, or to any of the available

named graphs

Based on: http://www.slideshare.net/LeeFeigenbaum/sparql-cheat-sheet

Specifying SPARQL Dataset

PREFIX ex: <...>
SELECT *
FROM ex:g1
FROM ex:g4
FROM NAMED ex:g1
FROM NAMED ex:g2
FROM NAMED ex:g3
WHERE {

 ...Pattern A...
 GRAPH ex:g3 {

 ...Pattern B...
}
GRAPH ?graph {
 ...Pattern C...
}

}

In this example…

• Pattern A results come from the merge of g1

and g4 which temporarily act as the default

graph

• Pattern B results can only come from the

named graph g3

• Pattern C results may come from any of the

named graphs available to this query: g1, g2, or

g3. The ?graph variable will specify the

source(s) of any results
Based on: http://www.slideshare.net/LeeFeigenbaum/sparql-cheat-sheet

Querying a Specific Dataset

SELECT * {

...graph pattern... #

 GRAPH :g1 {

...graph pattern... # a specific graph

}

GRAPH ?graph {

...graph pattern... # any named graph

}

}

Default Graph (no IRI)

Named Graph 1
<...#g1>

Named Graph 2
<...#g2>

Named Graph 3
<...#g3>

or

or

Based on: http://www.slideshare.net/LeeFeigenbaum/sparql-cheat-sheet

default graph
and any named
graphs

SELECT * {

 GRAPH :Album {

 ?album a :Album .

 ?album :artist ?artist .

 }

 GRAPH :Artist {

 ?artist a :SoloArtist .

 }

}

Named Graph Query

SELECT *

FROM :Album

{

 ?album a :Album .

 ?album :artist ?artist .

 ?album :date ?date .

}

Override Default Graph

Learning Objectives

Learning
Objectives

Learn the fundamentals of RDF graphs

Understand the core ideas of SPARQL queries

Describe the common types of SPARQL queries

Demonstrate the use of SPARQL to create or update
RDF data

Learn how to work with named graphs

Thank you

